15 research outputs found

    Reconstructing the gradient source position from steady-state fluxes to small receptors

    Get PDF
    Recovering the position of a source from the fluxes of diffusing particles through small receptors allows a biological cell to determine its relative position, spatial localization and guide it to a final target. However, how a source can be recovered from point fluxes remains unclear. Using the Narrow Escape Time approach for an open domain, we compute the diffusion fluxes of Brownian particles generated by a steady-state gradient from a single source through small holes distributed on a surface in two dimensions. {We find that the location of a source can be recovered when there are at least 3 receptors and the source is positioned no further than 10 cell radii away}, but this condition is not necessary in a narrow strip. The present approach provides a computational basis for the first step of direction sensing of a gradient at a single cell level.This work was supported by EPSRC grant no EP/K032208/1. U.D. was supported by a Junior Interdisciplinary Fellowship via Wellcome Trust grant number 105602/Z/14/Z and a Herchel Smith Postdoctoral Fellowship. D.H. team is supported by a FRM grant

    Diffusion laws in dendritic spines

    Get PDF
    Dendritic spines are small protrusions on a neuronal dendrite that are the main locus of excitatory synaptic connections. Although their geometry is variable over time and along the dendrite, they typically consist of a relatively large head connected to the dendritic shaft by a narrow cylindrical neck. The surface of the head is connected smoothly by a funnel or non-smoothly to the narrow neck, whose end absorbs the particles at the dendrite. We demonstrate here how the geometry of the neuronal spine can control diffusion and ultimately synaptic processes. We show that the mean residence time of a Brownian particle, such as an ion or molecule inside the spine, and of a receptor on its membrane, prior to absorption at the dendritic shaft depends strongly on the curvature of the connection of the spine head to the neck and on the neck's length. The analytical results solve the narrow escape problem for domains with long narrow necks

    Mixed analytical-stochastic simulation method for the recovery of a Brownian gradient source from probability fluxes to small windows.

    Get PDF
    Is it possible to recover the position of a source from the steady-state fluxes of Brownian particles to small absorbing windows located on the boundary of a domain? To address this question, we develop a numerical procedure to avoid tracking Brownian trajectories in the entire infinite space. Instead, we generate particles near the absorbing windows, computed from the analytical expression of the exit probability. When the Brownian particles are generated by a steady-state gradient at a single point, we compute asymptotically the fluxes to small absorbing holes distributed on the boundary of half-space and on a disk in two dimensions, which agree with stochastic simulations. We also derive an expression for the splitting probability between small windows using the matched asymptotic method. Finally, when there are more than two small absorbing windows, we show how to reconstruct the position of the source from the diffusion fluxes. The present approach provides a computational first principle for the mechanism of sensing a gradient of diffusing particles, a ubiquitous problem in cell biology
    corecore