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Reconstructing the gradient source 
position from steady-state fluxes to 
small receptors
Ulrich Dobramysl  1 & David Holcman2,3

Recovering the position of a source from the fluxes of diffusing particles through small receptors 
allows a biological cell to determine its relative position, spatial localization and guide it to a final 
target. However, how a source can be recovered from point fluxes remains unclear. Using the Narrow 
Escape approach for an open domain, we compute the diffusion fluxes of Brownian particles generated 
by a steady-state gradient from a single source through small holes distributed on a surface in two 
dimensions. We find that the location of a source can be recovered when there are at least 3 receptors 
and the source is positioned no further than 10 cell radii away, but this condition is not necessary in a 
narrow strip. The present approach provides a computational basis for the first step of direction sensing 
of a gradient at a single cell level.

Sensing a molecular gradient made of cue concentration is the first step to transform cell positional information 
into a genetic specialization and a differentiation signal1. During axonal growth and guidance, the growth cone 
(the tip of a neuron) uses the concentration of morphogens2,3 to decide whether or not to continue moving, 
stop, turn right or left. Bacteria and spermatozoa in particular are able to orient themselves in a chemotaxis 
gradient4–10. However, how a cell senses an external gradient concentration depends on its ability to estimate the 
fluxes of cues. These fluxes have been computed assuming that cues are fully or partially absorbed uniformly at 
the surface of a detecting ball11. These computations are used to estimate the sensitivity of the local concentration. 
This, however, is insufficient to establish the orientation of the source of the gradient. Our aim is to clarify how a 
cell, which is only a few microns in size, can detect the direction of a source. In particular, our main focus is on the 
directional sensing of cues in neuronal growth cones, although the presented techniques should also be applicable 
to a wider range of cells.

The first step of differentiating left from right certainly has to involve the spatial difference in the binding flux 
of external cues. A receptor can use two mode of decoding: it can respond to the rate or to the binding time5. 
We are exploring here the first possibility, that corresponds to a diffusion-limited regime where any cue hitting a 
receptor will immediately lead to receptor activation. Examples are chemoattractants that bind with high affinity 
to the receptor guanylyl cyclase in sperm in order to monitor the rate of binding events rather than the receptor 
occupancy. Other examples are odorants and endocrine disrupting chemicals that activate channels with fast 
activation. In neurons TRPV1 channel integrates various stimuli. In addition, we do not consider here a possible 
time integration of the external cues signal, as described for sperms, which is based on the rate of changes in 
calcium concentration directly modulated by an external gradient12. We are mainly concerned with growth cone 
navigation in the developing brain, for which there is no obvious time integration, because the motion of a growth 
cone is much slower than the binding time of cues13 (see also14).

Our model for cell direction detection uses a reflecting disk covered with small receptors. The receptors 
are perfect absorbers for Brownian particles (cues), emanating from a point source. Computing the fluxes of 
Brownian particles to small targets is part of the Narrow Escape Theory15–17, but this theory cannot be applied 
directly to open and unbounded domains, because the mean passage time for particles to hit any small target is 
infinite. To avoid this difficulty, we neglect the receptor binding time of diffusing molecules and consider that cell 
sensing is possible via direct measurement of the diffusion flux. However, we do not account for any further cellu-
lar transduction cascade that translates receptor local activation into an internal signal. A receptor-local memory 
mechanism is necessary in order to prevent loss of directional information on the gradient due to homogenization 
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of the downstream transduced signal (concentration of a second messenger or surface molecules) inside the cell. 
Therefore, asymmetric fluxes at the receptor level should lead to an asymmetrical transduction inside the cell. 
Hence, we do not replace receptors by a homogenized boundary condition that would render measurements of 
spatial flux differences impossible.

In this letter, we first compute the fluxes of diffusing molecules to small targets (N = 2 and 3) located on the 
surface of a detecting disk. We evaluate the effect of different receptor arrangements and also study the influence 
of an infinitely long, confining narrow strip. Secondly, we estimate the maximum distance from a source at which 
a given concentration can be detected with a pre-defined accuracy. Finally, we study how the location of a source 
can be recovered from the difference of fluxes. We demonstrate that the source position of a gradient can be 
reconstructed or triangulated with three receptors, while sensing of the concentration level can be achieved with 
two only.

Results
Diffusion fluxes through narrow windows. The probability density function pt(x, x0) for a Brownian 
particle generated at location x0 that can be absorbed on the boundary of a detecting two-dimensional disk or 
radius R, Ω = D(R), by windows ∪ ∪∂Ω … ∂ΩN1  located on the surface ∂Ω of said disk Ω satisfies

∂

∂
= Δ

p
t

D p (1)
t

t



∪ ∪
∪ ∪

δ= − ∈ − Ω =

∂

∂
= ∈ ∂Ω − ∂Ω … ∂Ω

= ∈ ∂Ω … ∂Ω .

x x x x x

n
x x x

x x x

p t
p

p

( , ) ( ) for and 0

( , ) 0 for ( )

( , ) 0 for (2)

t

t
N

t N

0 0
2

0 1

0 1

The reflecting boundary condition at ∪ ∪∂Ω − ∂Ω … ∂Ω( )N1  accounts for the impenetrable boundary so 
that diffusing molecules are reflected on the surface. The absorbing boundary condition on each of the windows 

∪ ∪∂Ω … ∂ΩN1  represents rapid binding with a diffusion limited activation rate. The window sizes are identical 
and equal to ε|∂Ω | =  11 . The steady-state probability density P0(x) is computed by solving the mixed bound-
ary value problem for the Laplace equation17



∪ ∪
∪ ∪

δ− Δ = − ∈ − Ω
∂
∂

= ∈ ∂Ω − ∂Ω … ∂Ω

= ∈ ∂Ω … ∂Ω .

x x x x

n
x x

x x

D P
P

P

( ) ( ) for

( ) 0 for ( )

( ) 0 for (3)

N

N

0 0
2

0
1

0 1

Although the density P0(x) is non-normalizable in two dimensions, we are only interested in the splitting 
probability between windows, i.e. the normalized steady-state flux at window k,
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Due to the recurrent property of the Brownian motion in two dimensions, the probability to hit a window 
before going to infinity is one, thus
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The fluxes for N = 2 windows can be computed using the Green’s function G(x, y) of the domain using 
matched asymptotic expansion18,19 and involves a Green’s function Matrix in general. However, using identity Eq. 
(5), it is sufficient to compute only one probability and we get
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where the external Neumann-Green’s function of a disk Ω = D(R) of radius R, for ∈ −x y B R, ( )2  is
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To evaluate how the probability P2 changes with the distance of the source x0 and the relative position of the 
windows, we compare Brownian simulations with the analytical expression (6) for a disk (Fig. 1A). For the sim-
ulations, we generated Brownian trajectories near the disk (on the surface of a disk of radius Re) according to the 
exit point distribution of a process from an internal disk20. Interestingly, already at a distance of L = 10R, the abso-
lute difference between the fluxes ΔP = |P1 − P2| is within 5%, making it impossible to determine source direction 
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or concentration differences in a noisy environment (as long as the amplitude is below the threshold of 5%). This 
result is independent of the window positions and ΔP → 0 as L increases, see Fig. 1B–D.

Diffusion in a narrow strip. In contrast, when the disk is located in a narrow strip (Fig. 2A), the difference 
of fluxes between the two windows converges asymptotically to a finite difference ΔP depending on the strip 
width a, even for large source distances L ≥ 100R (see Fig. 2B–D). Indeed, the fluxes hardly show any dependence 
on source distance L. The narrow funnel16 between the strip and the disk prevents Brownian particles to reach a 
window located on the opposite side of the disk, leading to the observed effects.

Sensitivity of detection. To further investigate how the window positions could influence the recovery 
of the source location, we estimated the maximum distance between the source and the disk containing two 

Figure 1. Diffusion fluxes to small windows on the disk surface. (A) Schematic representation of a mixed 
stochastic simulation of Brownian particles released at position x0 at a distance L = |x0| from the origin O. Two 
windows of size 2  are placed on the circumference of the disk of radius R in two dimensions or the equator of a 
sphere in three dimensions at angles θ1 and θ2 with the x-axis. Brownian particles are injected at a distance Re. 
(B) Splitting probability (normalized flux) at window 2 in two dimensions with angle θ1 = 0, (C) θ1 = π/2 (the 
jump in the analytical solution at π/2 emerges due to divergence when windows overlap), and (D) θ1 = π. 
Simulations (markers) are compared to analytical solutions (solid lines). (E) Splitting probability at window 2 in 
three dimensions (flux normalized to the total flux absorbed by any of the two windows) with angle θ1 = 0, (F) 
θ1 = π/2, and (G) θ1 = π.



www.nature.com/scientificreports/

4SCIENtIfIC RepoRtS |  (2018) 8:941  | DOI:10.1038/s41598-018-19355-5

absorbing windows located at position x1, x2 that gives a significant difference of probability flux. For that pur-
pose, we define the sensitivity ratio as

=
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(note that here P1(x1, x2, x0) + P2(x1, x2, x0) = 1). The domain of sensitivity for a threshold Th is the interior of the 
two-dimensional region
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We plotted the boundary of the region DS for two absorbing windows symmetrically positioned (Fig. 3A) and 
when the angle is θ12 = π/2 (Fig. 3B) for Th = 1%, 5% and 10%. The region DS consists of two connected compo-
nents and no detection (for a threshold below Th) is possible outside DS. Interestingly, with a 1% precision, the 

Figure 2. Diffusion fluxes to small windows for a disk in a narrow strip of width a. (A) Scheme of the mixed 
stochastic simulations of Brownian particles confined in the strip and released at position x0 at a distance 
L = |x0| from the origin O. Two windows of size 2  are placed on the circumference of the disk of radius R at 
angles θ1 and θ2 with the x-axis. Brownian particles are injected at a distance d on both sides of the disk (dashed 
vertical lines) and reflected from the strip walls at y = ±a/2. (B) Splitting probability (normalized flux) at 
window 2 with angle θ1 = 0, (C) θ1 = π/2, and (D) θ1 = π.
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domain is around 20× the size of the detecting disk. Beyond this distance, no detection is possible. The detection 
sensitivity for a given source location x0 and optimal window placement is defined by
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The maximum is achieved for a window configuration aligned with the position of the source and symmetric 
with respect to the center of the disk centered at the origin. An explicit computation with x2 = −x1, |x1| = |x2| = R 
gives

=
| |

+



 | |






ε

x
x x

f R o( ) 2
log

1 ,
(11)

R0
0

2
0

where R is the radius of the disk. Hence, the detection sensitivity decreases as the reciprocal of the distance to the 
source L = |x0|. With three windows, detection is possible if at least one of the difference between the splitting 
probability is higher than the threshold Th. We thus define the new sensitivity ratio using
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with P1, P2 and P3 defined above depending on x1, x2, x3 and x0. This definition accounts for the symmetric posi-
tioning of absorbing windows located on the boundary of the disk. The region where the source is detected sur-
rounds the detecting disk Ω. Numerical simulations show the region DS defined in Eq. (9) for the function r3 with 
windows positioned at the corners of an equilateral triangle is now connected and seems to extend to 40 times the 
size of the detecting disk (Fig. 3C).

Diffusion-triangulation of the gradient source. Reconstructing the location of the source in the detect-
able region DS from the steady-state probability fluxes, requires inverting Eq. (6) and to find x0 when the fluxes 
at the windows (receptors) are known. With two windows located on a detecting disk and using the expression 
of the Green’s function (7), we obtain a one dimensional curve (Fig. 4A). Therefore, at least three windows are 
required to recover the point source. We indeed found that the source is located at the intersection of two curves 
(Fig. 4B). Indeed, since P1 + P2 + P3 = 1, we only need to estimate P1 and P2, obtained from Eq. (3) by the same 

Figure 3. Detectable region and contours for small windows on a disk. (A) Two windows are placed on a disk 
with angular spacing θ = π. The contours indicate the position for a threshold Th = 1%, 5% and 10%, given by 
the normalized flux difference or probability (8). (B) Two windows are placed with an angle π/2 apart. (C) Three 
windows placed 2π/3 apart. The contours of D(S) are given by r3 = Th (relation (12)).
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matched asymptotic method as for two windows, except that now we have to invert a three-dimensional matrix 
equation (see SI). We then use the expression of the Green’s function given in Eq. (7) to invert the equations and 
the intersection point is found numerically via MINPACK’s multidimensional nonlinear root finding method 
hybrj21. Interestingly, fluctuations in the probability fluxes Pi (implemented by changing Pi → [1 ± η]Pi in SI equa-
tions S1) yields large, nonlinear and spatially inhomogeneous uncertainty in the reconstructed source position 
as shown in the overlap of the shaded areas in Fig. 4B. Indeed, in two dimensions, reconstructing the position 
(i.e. two unknown coordinates) requires two intersecting curves. Hence, three windows are needed, yielding the 
source position as the intersection point of two curves (Fig. 4B). Interestingly, fluctuations in the probability flux 
lead to large, nonlinear and spatially inhomogeneous uncertainty in the recovery of the source position as shown 
in Fig. 4B–F.

Discussion and Conclusion
The ability of a cell to sense a gradient concentration is mediated by the binding of Brownian molecules to recep-
tors11,22. Computing the diffusion fluxes via homogenizing over local receptor positions2,23,24, renders a recovery 
of any directional information impossible, as it assigns the same flux to the entire boundary of the detecting disk. 
Based on Narrow Escape Theory17–19, we estimated the probability fluxes on each individual receptor window 
separately and found that in two dimensions (i.e. a flat environment), the direction of the source can be recov-
ered. This mechanism requires a comparison between the fluxes of at least three boundary receptors. In addition, 
the Green’s function method allows us to estimate the boundary of the region of sensitivity characterized by a 
difference of fluxes between receptors being larger than a predefined sensitivity threshold. The sensitivity decays 
with the reciprocal of the distance to the source according to Eq. (11). Furthermore, we evaluated the effect of 

Figure 4. Recovery or triangulation of the source position from fluxes to small absorbing windows. (A) Two 
windows are positioned on a detecting disk with an angular spacing of 2π/3. This arrangement allows recovery 
for the position x0 only a one dimensional curve. The curves are the ensemble of solutions for x0 computed from 
equation (6) for the fluxes (P1, P2) displayed in the figure legend. (B–E) Intersection of the solid and dashed 
curves computed from equation (6) for three absorbing windows. In that case, a unique position is recovered 
for the source position x0. We provide several examples: the original source positions are (B) x0 = (−0.5, 1.7), 
(C) x0 = (−2.3, −1.5), (D) x0 = (−3.5, 0) and (E) x0 = (1, 1). The amplitude of fluctuations for a fixed uncertainty 
η = 0.15 added to the fluxes (chosen arbitrarily for illustration purposes) is represented in shaded areas. The 
resulting uncertainty in the recovered source position corresponds to overlap of the shaded regions.
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the external geometry on the threshold of sensitivity: although a disk of radius R with absorbing windows cannot 
sense the source position located beyond ten cell radii, in a narrow band, the detection is possible due to narrow 
passages for the diffusing molecules16, as long as one detecting window is facing away from the source.

The present results have several applications, such as growth-cone navigation inside the developing brain. 
Neurons have to travel millimeters to centimeters to find the correct cortical regions and to form synaptic con-
nections2,3,25. We propose that narrow extracellular tubes formed by neurons and glial cells probably allow the 
genesis of shallow gradients detected by receptors located on the growth cone, although it is not known precisely 
how these receptors are organized. The dynamics of the growth cone including moving protrusions is certainly 
an additional mechanism worthy of further investigation in context of direction sensing, but should dominate for 
short-range distances only. Finally, we suggest here that growth-cone gradient assays in restricted environments 
could reveal how narrow passages, generated between neurons modulate the search for a final destination. These 
passages could explain the amplification of the gradient sensing much further than the 10 cell radii, as predicted 
by the diffusion hypothesis that we have explored here.

Although we focussed on two and three windows only, the results would be similar for two or three recep-
tor clusters17. The model we used here was developed in the fast binding limit without rebinding4. It remains a 
challenge to apply the present theory to understand how sperm5 or neurite growth25 localize the source of their 
cues. We limited the present approach to the initial level of source detection, however the asymmetry of receptor 
detection needs to persist in the downstream transduction, which certainly is another key question to investigate. 
Future works should also include the time scales of binding and unbinding events to receptors and explore the 
consequence of dimension 3, that require generalizing the Narrow escape approach14,17.

References
 1. Wolpert, L. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25, 1 (1969).
 2. Goodhill, G. J. Can Molecular Gradients Wire the Brain? Trends Neurosci. 39, 202 (2016).
 3. Reingruber, J. & Holcman, D. Computational and mathematical methods for morphogenetic gradient analysis, boundary formation 

and axonal targeting. Sem. Cell Dev. Biol. 35, 189 (2014).
 4. Kaupp, U. B. & Strünker, T. Signaling in Sperm: More Different than Similar. Trends Cell Biol. 2016, S0962 (2016).
 5. Strünker, T., Alvarez, L. & Kaupp, U. B. At the physical limit - chemosensation in sperm. Curr. Opin. Neurobiol. 34, 110 (2015).
 6. Alvarez, L., Friedrich, B. M., Gompper, G. & Kaupp, U. B. The computational sperm cell. Trends Cell Biol. 24, 198 (2014).
 7. Wachten, D., Jikeli, J. F. & Kaupp, U. B. Sperm Sensory Signaling. Cold Spring Harb. Perspect. Biol. 2017, a028225 (2017).
 8. Yang, J., Wolgemuth, C. W. & Huber, G. Kinematics of the Swimming of Spiroplasma. Phys. Rev. Lett. 102, 218102 (2009).
 9. Kantsler, V., Dunkel, J., Blayney, M. & Goldstein, R. E. Rheotaxis facilitates upstream navigation of mammalian sperm cells. Elife 

2014, e02403 (2014).
 10. Lauga, E. & Powers, T. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72, 096601 (2009).
 11. Berg, H. C. & Purcell, E. M. Physics of chemoreception. Biophys. J. 20, 193 (1977).
 12. Alvarez, L. et al. The rate of change in Ca2+ concentration controls sperm chemotaxis. J. Cell Biol. 196, 653 (2012).
 13. Chedotal, A. & Richards, L. J. Wiring the Brain: The Biology of Neuronal Guidance. Cold Spring Harb Perspect Biol. 2, a001917 

(2010).
 14. Brendan, A., Dayan, P. & Goodhill, G. The limits of chemosensation vary across dimensions. Nat. Comm. 6, 7468 (2015).
 15. Schuss, Z., Singer, A. & Holcman, D. The narrow escape problem for diffusion in cellular microdomains. Proc. Natl. Acad. Sci. USA 

104, 16098 (2007).
 16. Holcman, D. & Schuss, Z. Control of flux by narrow passages and hidden targets in cellular biology. Phys. Progr. Report 76, 7 (2013).
 17. Holcman, D. & Schuss, Z. Stochastic Narrow Escape in Molecular and Cellular Biology: Analysis and Applications. (Springer, 2015).
 18. Coombs, D., Straube, R. & Ward, M. Diffusion on a sphere with localized traps: Mean first passage time, eigenvalue asymptotics, and 

Fekete points. SIAM J. Appl. Math. 70, 302 (2009).
 19. Ward, M. J., Henshaw, W. D. & Keller, J. B. Summing logarithmic expansions for singularly perturbed eigenvalue problems. SIAM J. 

Appl. Math. 53, 799 (1993).
 20. Schuss, Z. Brownian dynamics at boundaries and interfaces. In Physics, Chemistry, and Biology (Springer, New York, 2013).
 21. Moré, J. J., Garbow, B. S. & Hillstrom, K. E. Argonne National Laboratory Report ANL-80-74 CM-P00068642 (1980).
 22. Holcman, D. & Schuss, Z. Stochastic chemical reactions in microdomains. J. Chem. Phys. 122, 114710 (2005).
 23. Aquino, G., Wingreen, N. S. & Endres, R. G. Know the Single-Receptor Sensing Limit? Think Again. J. Stat. Phys. 2016, 1353 (2016).
 24. Berezhkovskii, A. M. & Szabo, A. Effect of ligand diffusion on occupancy fluctuations of cell-surface receptors. J. Chem. Phys. 139, 

121910 (2013).
 25. Yogev, S. & Shen, K. Cellular and molecular mechanisms of synaptic specificity. Annu. Rev. Cell. Dev. Biol. 30, 417 (2014).

Acknowledgements
The authors would like to thank the Newton Institute for Mathematical Sciences, Cambridge, for support 
and hospitality during the programme “Stochastic Dynamical Systems in Biology: Numerical Methods and 
Applications” where work on this paper was undertaken. This work was supported by EPSRC grant no EP/
K032208/1. U.D. was supported by a Junior Interdisciplinary Fellowship via Wellcome Trust grant number 
105602/Z/14/Z and a Herchel Smith Postdoctoral Fellowship. D.H. team is supported by a FRM grant.

Author Contributions
U.D. and D.H. made the figures and designed the simulations and the computations. D.H. and U.D. designed the 
project, made the analytical derivation and wrote the main manuscript text. All authors reviewed the manuscript.

Additional Information
Supplementary information accompanies this paper at https://doi.org/10.1038/s41598-018-19355-5.
Competing Interests: The authors declare that they have no competing interests.
Publisher's note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

http://dx.doi.org/10.1038/s41598-018-19355-5


www.nature.com/scientificreports/

8SCIENtIfIC RepoRtS |  (2018) 8:941  | DOI:10.1038/s41598-018-19355-5

Open Access This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Cre-
ative Commons license, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons license and your intended use is not per-
mitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the 
copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
 
© The Author(s) 2018

http://creativecommons.org/licenses/by/4.0/

	Reconstructing the gradient source position from steady-state fluxes to small receptors
	Results
	Diffusion fluxes through narrow windows. 
	Diffusion in a narrow strip. 
	Sensitivity of detection. 
	Diffusion-triangulation of the gradient source. 

	Discussion and Conclusion
	Acknowledgements
	Figure 1 Diffusion fluxes to small windows on the disk surface.
	Figure 2 Diffusion fluxes to small windows for a disk in a narrow strip of width a.
	Figure 3 Detectable region and contours for small windows on a disk.
	Figure 4 Recovery or triangulation of the source position from fluxes to small absorbing windows.




