9 research outputs found

    Adapting the Neural Encoder-Decoder Framework from Single to Multi-Document Summarization

    Full text link
    Generating a text abstract from a set of documents remains a challenging task. The neural encoder-decoder framework has recently been exploited to summarize single documents, but its success can in part be attributed to the availability of large parallel data automatically acquired from the Web. In contrast, parallel data for multi-document summarization are scarce and costly to obtain. There is a pressing need to adapt an encoder-decoder model trained on single-document summarization data to work with multiple-document input. In this paper, we present an initial investigation into a novel adaptation method. It exploits the maximal marginal relevance method to select representative sentences from multi-document input, and leverages an abstractive encoder-decoder model to fuse disparate sentences to an abstractive summary. The adaptation method is robust and itself requires no training data. Our system compares favorably to state-of-the-art extractive and abstractive approaches judged by automatic metrics and human assessors.Comment: 11 page

    A Novel ILP Framework for Summarizing Content with High Lexical Variety

    Full text link
    Summarizing content contributed by individuals can be challenging, because people make different lexical choices even when describing the same events. However, there remains a significant need to summarize such content. Examples include the student responses to post-class reflective questions, product reviews, and news articles published by different news agencies related to the same events. High lexical diversity of these documents hinders the system's ability to effectively identify salient content and reduce summary redundancy. In this paper, we overcome this issue by introducing an integer linear programming-based summarization framework. It incorporates a low-rank approximation to the sentence-word co-occurrence matrix to intrinsically group semantically-similar lexical items. We conduct extensive experiments on datasets of student responses, product reviews, and news documents. Our approach compares favorably to a number of extractive baselines as well as a neural abstractive summarization system. The paper finally sheds light on when and why the proposed framework is effective at summarizing content with high lexical variety.Comment: Accepted for publication in the journal of Natural Language Engineering, 201

    Automatic Summarization for Student Reflective Responses

    Get PDF
    Educational research has demonstrated that asking students to respond to reflection prompts can improve both teaching and learning. However, summarizing student responses to these prompts is an onerous task for humans and poses challenges for existing summarization methods. From the input perspective, there are three challenges. First, there is a lexical variety problem due to the fact that different students tend to use different expressions. Second, there is a length variety problem that student inputs range from single words to multiple sentences. Third, there is a redundancy issue since some content among student responses are not useful. From the output perspective, there are two additional challenges. First, the human summaries consist of a list of important phrases instead of sentences. Second, from an instructor's perspective, the number of students who have a particular problem or are interested in a particular topic is valuable. The goal of this research is to enhance student response summarization at multiple levels of granularity. At the sentence level, we propose a novel summarization algorithm by extending traditional ILP-based framework with a low-rank matrix approximation to address the challenge of lexical variety. At the phrase level, we propose a phrase summarization framework by a combination of phrase extraction, phrase clustering, and phrase ranking. Experimental results show the effectiveness on multiple student response data sets. Also at the phrase level, we propose a quantitative phrase summarization algorithm in order to estimate the number of students who semantically mention the phrases in a summary. We first introduce a new phrase-based highlighting scheme for automatic summarization. It highlights the phrases in the human summaries and also the corresponding semantically-equivalent phrases in student responses. Enabled by the highlighting scheme, we improve the previous phrase-based summarization framework by developing a supervised candidate phrase extraction, learning to estimate the phrase similarities, and experimenting with different clustering algorithms to group phrases into clusters. Experimental results show that our proposed methods not only yield better summarization performance evaluated using ROUGE, but also produce summaries that capture the pressing student needs

    Scalable Teaching and Learning via Intelligent User Interfaces

    Get PDF
    The increasing demand for higher education and the educational budget cuts lead to large class sizes. Learning at scale is also the norm in Massive Open Online Courses (MOOCs). While it seems cost-effective, the massive scale of class challenges the adoption of proven pedagogical approaches and practices that work well in small classes, especially those that emphasize interactivity, active learning, and personalized learning. As a result, the standard teaching approach in today’s large classes is still lectured-based and teacher-centric, with limited active learning activities, and with relatively low teaching and learning effectiveness. This dissertation explores the usage of Intelligent User Interfaces (IUIs) to facilitate the efficient and effective adoption of the tried-and-true pedagogies at scale. The first system is MindMiner, an instructor-side data exploration and visualization system for peer review understanding. MindMiner helps instructors externalize and quantify their subjective domain knowledge, interactively make sense of student peer review data, and improve data exploration efficiency via distance metric learning. MindMiner also helps instructors generate customized feedback to students at scale. We then present BayesHeart, a probabilistic approach for implicit heart rate monitoring on smartphones. When integrated with MOOC mobile clients, BayesHeart can capture learners’ heart rates implicitly when they watch videos. Such information is the foundation of learner attention/affect modeling, which enables a ‘sensorless’ and scalable feedback channel from students to instructors. We then present CourseMIRROR, an intelligent mobile system integrated with Natural Language Processing (NLP) techniques that enables scalable reflection prompts in large classrooms. CourseMIRROR 1) automatically reminds and collects students’ in-situ written reflections after each lecture; 2) continuously monitors the quality of a student’s reflection at composition time and generates helpful feedback to scaffold reflection writing; 3) summarizes the reflections and presents the most significant ones to both instructors and students. Last, we present ToneWars, an educational game connecting Chinese as a Second Language (CSL) learners with native speakers via collaborative mobile gameplay. We present a scalable approach to enable authentic competition and skill comparison with native speakers by modeling their interaction patterns and language skills asynchronously. We also prove the effectiveness of such modeling in a longitudinal study

    Abstractive multi-document summarization - paraphrasing and compressing with neural networks

    Get PDF
    This thesis presents studies in neural text summarization for single and multiple documents.The focus is on using sentence paraphrasing and compression for generating fluent summaries, especially in multi-document summarization where there is data paucity. A novel solution is to use transfer-learning from downstream tasks with an abundance of data. For this purpose, we pre-train three models for each of extractive summarization, paraphrase generation and sentence compression. We find that summarization datasets – CNN/DM and NEWSROOM – contain a number of noisy samples. Hence, we present a method for automatically filtering out this noise. We combine the representational power of the GRU-RNN and TRANSFORMER encoders in our paraphrase generation model. In training our sentence compression model, we investigate the impact of using different early-stopping criteria, such as embedding-based cosine similarity and F1. We utilize the pre-trained models (ours, GPT2 and T5) in different settings for single and multi-document summarization.SGS Tuition Award Alberta Innovates Technology Futures (AITF

    Contextual Understanding of Sequential Data Across Multiple Modalities

    Get PDF
    In recent years, progress in computing and networking has made it possible to collect large volumes of data for various different applications in data mining and data analytics using machine learning methods. Data may come from different sources and in different shapes and forms depending on their inherent nature and the acquisition process. In this dissertation, we focus specifically on sequential data, which have been exponentially growing in recent years on platforms such as YouTube, social media, news agency sites, and other platforms. An important characteristic of sequential data is the inherent causal structure with latent patterns that can be discovered and learned from samples of the dataset. With this in mind, we target problems in two different domains of Computer Vision and Natural Language Processing that deal with sequential data and share the common characteristics of such data. The first one is action recognition based on video data, which is a fundamental problem in computer vision. This problem aims to find generalized patterns from videos to recognize or predict human actions. A video contains two important sets of information, i.e. appearance and motion. These information are complementary, and therefore an accurate recognition or prediction of activities or actions in video data depend significantly on our ability to extract them both. However, effective extraction of these information is a non-trivial task due to several challenges, such as viewpoint changes, camera motions, and scale variations, to name a few. It is thus crucial to design effective and generalized representations of video data that learn these variations and/or are invariant to such variations. We propose different models that learn and extract spatio-temporal correlations from video frames by using deep networks that overcome these challenges. The second problem that we study in this dissertation in the context of sequential data analysis is text summarization in multi-document processing. Sentences consist of sequence of words that imply context. The summarization task requires learning and understanding the contextual information from each sentence in order to determine which subset of sentences forms the best representative of a given article. With the progress made by deep learning, better representations of words have been achieved, leading in turn to better contextual representations of sentences. We propose summarization methods that combine mathematical optimization, Determinantal Point Processes (DPPs), and deep learning models that outperform the state of the art in multi-document text summarization
    corecore