18 research outputs found

    A Unified Successive Pseudo-Convex Approximation Framework

    Get PDF
    In this paper, we propose a successive pseudo-convex approximation algorithm to efficiently compute stationary points for a large class of possibly nonconvex optimization problems. The stationary points are obtained by solving a sequence of successively refined approximate problems, each of which is much easier to solve than the original problem. To achieve convergence, the approximate problem only needs to exhibit a weak form of convexity, namely, pseudo-convexity. We show that the proposed framework not only includes as special cases a number of existing methods, for example, the gradient method and the Jacobi algorithm, but also leads to new algorithms which enjoy easier implementation and faster convergence speed. We also propose a novel line search method for nondifferentiable optimization problems, which is carried out over a properly constructed differentiable function with the benefit of a simplified implementation as compared to state-of-the-art line search techniques that directly operate on the original nondifferentiable objective function. The advantages of the proposed algorithm are shown, both theoretically and numerically, by several example applications, namely, MIMO broadcast channel capacity computation, energy efficiency maximization in massive MIMO systems and LASSO in sparse signal recovery.Comment: submitted to IEEE Transactions on Signal Processing; original title: A Novel Iterative Convex Approximation Metho

    Multiuser MISO Transmitter Optimization for Inter-Cell Interference Mitigation

    Full text link
    The transmitter optimization (i.e., steering vectors and power allocation) for a MISO Broadcast Channel (MISO-BC) subject to general linear constraints is considered. Such constraints include, as special cases, the sum power, the per-antenna or per-group-of-antennas power, and "forbidden interference direction" constraints. We consider both the optimal dirty-paper coding and the simple suboptimal linear zero-forcing beamforming strategies, and provide numerically efficient algorithms that solve the problem in its most general form. As an application, we consider a multi-cell scenario with partial cell cooperation, where each cell optimizes its precoder by taking into account interference constraints on specific users in adjacent cells. The effectiveness of the proposed methods is evaluated in a simple system scenario including two adjacent cells, under different fairness criteria that emphasize the bottleneck role of users near the cell "boundary". Our results show that "active" Inter-Cell Interference (ICI) mitigation outperforms the conventional "static" ICI mitigation based on fractional frequency reuse.Comment: 30 pages, 10 figures, and 1 table. revised and resubmitted to IEEE Transactions on Signal Processin
    corecore