4 research outputs found

    Suitability of Airborne and Terrestrial Laser Scanning for Mapping Tree Crop Structural Metrics for Improved Orchard Management

    Get PDF
    Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) systems are useful tools for deriving horticultural tree structure estimates. However, there are limited studies to guide growers and agronomists on different applications of the two technologies for horticultural tree crops, despite the importance of measuring tree structure for pruning practices, yield forecasting, tree condition assessment, irrigation and fertilization optimization. Here, we evaluated ALS data against near coincident TLS data in avocado, macadamia and mango orchards to demonstrate and assess their accuracies and potential application for mapping crown area, fractional cover, maximum crown height, and crown volume. ALS and TLS measurements were similar for crown area, fractional cover and maximum crown height (coefficient of determination (R2 ) ≥ 0.94, relative root mean square error (rRMSE) ≤ 4.47%). Due to the limited ability of ALS data to measure lower branches and within crown structure, crown volume estimates from ALS and TLS data were less correlated (R 2 = 0.81, rRMSE = 42.66%) with the ALS data found to consistently underestimate crown volume. To illustrate the effects of different spatial resolution, capacity and coverage of ALS and TLS data, we also calculated leaf area, leaf area density and vertical leaf area profile from the TLS data, while canopy height, tree row dimensions and tree counts) at the orchard level were calculated from ALS data. Our results showed that ALS data have the ability to accurately measure horticultural crown structural parameters, which mainly rely on top of crown information, and measurements of hedgerow width, length and tree counts at the orchard scale is also achievable. While the use of TLS data to map crown structure can only cover a limited number of trees, the assessment of all crown strata is achievable, allowing measurements of crown volume, leaf area density and vertical leaf area profile to be derived for individual trees. This study provides information for growers and horticultural industries on the capacities and achievable mapping accuracies of standard ALS data for calculating crown structural attributes of horticultural tree crops

    Suitability of airborne and terrestrial laser scanning for mapping tree crop structural metrics for improved orchard management

    No full text
    Airborne Laser Scanning (ALS) and Terrestrial Laser Scanning (TLS) systems are useful tools for deriving horticultural tree structure estimates. However, there are limited studies to guide growers and agronomists on different applications of the two technologies for horticultural tree crops, despite the importance of measuring tree structure for pruning practices, yield forecasting, tree condition assessment, irrigation and fertilization optimization. Here, we evaluated ALS data against near coincident TLS data in avocado, macadamia and mango orchards to demonstrate and assess their accuracies and potential application for mapping crown area, fractional cover, maximum crown height, and crown volume. ALS and TLS measurements were similar for crown area, fractional cover and maximum crown height (coefficient of determination (R) ≥ 0.94, relative root mean square error (rRMSE) ≤ 4.47%). Due to the limited ability of ALS data to measure lower branches and within crown structure, crown volume estimates from ALS and TLS data were less correlated (R = 0.81, rRMSE = 42.66%) with the ALS data found to consistently underestimate crown volume. To illustrate the effects of different spatial resolution, capacity and coverage of ALS and TLS data, we also calculated leaf area, leaf area density and vertical leaf area profile from the TLS data, while canopy height, tree row dimensions and tree counts) at the orchard level were calculated from ALS data. Our results showed that ALS data have the ability to accurately measure horticultural crown structural parameters, which mainly rely on top of crown information, and measurements of hedgerow width, length and tree counts at the orchard scale is also achievable. While the use of TLS data to map crown structure can only cover a limited number of trees, the assessment of all crown strata is achievable, allowing measurements of crown volume, leaf area density and vertical leaf area profile to be derived for individual trees. This study provides information for growers and horticultural industries on the capacities and achievable mapping accuracies of standard ALS data for calculating crown structural attributes of horticultural tree crops

    Fire

    Get PDF
    Vegetation plays a crucial role in regulating environmental conditions, including weather and climate. The amount of water and carbon dioxide in the air and the albedo of our planet are all influenced by vegetation, which in turn influences all life on Earth. Soil properties are also strongly influenced by vegetation, through biogeochemical cycles and feedback loops (see Volume 1A—Section 4). Vegetated landscapes on Earth provide habitat and energy for a rich diversity of animal species, including humans. Vegetation is also a major component of the world economy, through the global production of food, fibre, fuel, medicine, and other plantbased resources for human consumptio
    corecore