715 research outputs found

    Mental distress detection and triage in forum posts: the LT3 CLPsych 2016 shared task system

    Get PDF
    This paper describes the contribution of LT3 for the CLPsych 2016 Shared Task on automatic triage of mental health forum posts. Our systems use multiclass Support Vector Machines (SVM), cascaded binary SVMs and ensembles with a rich feature set. The best systems obtain macro-averaged F-scores of 40% on the full task and 80% on the green versus alarming distinction. Multiclass SVMs with all features score best in terms of F-score, whereas feature filtering with bi-normal separation and classifier ensembling are found to improve recall of alarming posts

    Semi-Supervised Approach to Monitoring Clinical Depressive Symptoms in Social Media

    Get PDF
    With the rise of social media, millions of people are routinely expressing their moods, feelings, and daily struggles with mental health issues on social media platforms like Twitter. Unlike traditional observational cohort studies conducted through questionnaires and self-reported surveys, we explore the reliable detection of clinical depression from tweets obtained unobtrusively. Based on the analysis of tweets crawled from users with self-reported depressive symptoms in their Twitter profiles, we demonstrate the potential for detecting clinical depression symptoms which emulate the PHQ-9 questionnaire clinicians use today. Our study uses a semi-supervised statistical model to evaluate how the duration of these symptoms and their expression on Twitter (in terms of word usage patterns and topical preferences) align with the medical findings reported via the PHQ-9. Our proactive and automatic screening tool is able to identify clinical depressive symptoms with an accuracy of 68% and precision of 72%.Comment: 8 pages, Advances in Social Networks Analysis and Mining (ASONAM), 2017 IEEE/ACM International Conferenc

    Finding the online cry for help : automatic text classification for suicide prevention

    Get PDF
    Successful prevention of suicide, a serious public health concern worldwide, hinges on the adequate detection of suicide risk. While online platforms are increasingly used for expressing suicidal thoughts, manually monitoring for such signals of distress is practically infeasible, given the information overload suicide prevention workers are confronted with. In this thesis, the automatic detection of suicide-related messages is studied. It presents the first classification-based approach to online suicidality detection, and focuses on Dutch user-generated content. In order to evaluate the viability of such a machine learning approach, we developed a gold standard corpus, consisting of message board and blog posts. These were manually labeled according to a newly developed annotation scheme, grounded in suicide prevention practice. The scheme provides for the annotation of a post's relevance to suicide, and the subject and severity of a suicide threat, if any. This allowed us to derive two tasks: the detection of suicide-related posts, and of severe, high-risk content. In a series of experiments, we sought to determine how well these tasks can be carried out automatically, and which information sources and techniques contribute to classification performance. The experimental results show that both types of messages can be detected with high precision. Therefore, the amount of noise generated by the system is minimal, even on very large datasets, making it usable in a real-world prevention setting. Recall is high for the relevance task, but at around 60%, it is considerably lower for severity. This is mainly attributable to implicit references to suicide, which often go undetected. We found a variety of information sources to be informative for both tasks, including token and character ngram bags-of-words, features based on LSA topic models, polarity lexicons and named entity recognition, and suicide-related terms extracted from a background corpus. To improve classification performance, the models were optimized using feature selection, hyperparameter, or a combination of both. A distributed genetic algorithm approach proved successful in finding good solutions for this complex search problem, and resulted in more robust models. Experiments with cascaded classification of the severity task did not reveal performance benefits over direct classification (in terms of F1-score), but its structure allows the use of slower, memory-based learning algorithms that considerably improved recall. At the end of this thesis, we address a problem typical of user-generated content: noise in the form of misspellings, phonetic transcriptions and other deviations from the linguistic norm. We developed an automatic text normalization system, using a cascaded statistical machine translation approach, and applied it to normalize the data for the suicidality detection tasks. Subsequent experiments revealed that, compared to the original data, normalized data resulted in fewer and more informative features, and improved classification performance. This extrinsic evaluation demonstrates the utility of automatic normalization for suicidality detection, and more generally, text classification on user-generated content

    Exploring the Impact of Evolutionary Computing based Feature Selection in Suicidal Ideation Detection

    Full text link
    © 2019 IEEE. The ubiquitous availability of smartphones and the increasing popularity of social media provide a platform for users to express their feelings, including suicidal ideation. Suicide prevention by suicidal ideation detection on social media lights the path to controlling the rapidly increasing suicide rates amongst youth. This paper proposes a diverse set of features and investigates into feature selection using the Firefly algorithm to build an efficient and robust supervised approach to classifying tweets with suicidal ideation. The development of a suicidal language to create three diverse, manually annotated datasets leads to the validation of the proposed model. An in-depth result and error analysis lead to an accurate system for monitoring suicidal ideation on social media along with the discovery of optimal feature subsets and selection methods using a penalty based Firefly algorithm
    • …
    corecore