2,815 research outputs found

    Real radical initial ideals

    Get PDF
    We explore the consequences of an ideal I of real polynomials having a real radical initial ideal, both for the geometry of the real variety of I and as an application to sums of squares representations of polynomials. We show that if in_w(I) is real radical for a vector w in the tropical variety, then w is in the logarithmic set of the real variety. We also give algebraic sufficient conditions for w to be in the logarithmic limit set of a more general semialgebraic set. If in addition the entries of w are positive, then the corresponding quadratic module is stable. In particular, if in_w(I) is real radical for some positive vector w then the set of sums of squares modulo I is stable. This provides a method for checking the conditions for stability given by Powers and Scheiderer.Comment: 16 pages, added examples, minor revision

    Toric completions and bounded functions on real algebraic varieties

    Full text link
    Given a semi-algebraic set S, we study compactifications of S that arise from embeddings into complete toric varieties. This makes it possible to describe the asymptotic growth of polynomial functions on S in terms of combinatorial data. We extend our earlier work to compute the ring of bounded functions in this setting and discuss applications to positive polynomials and the moment problem. Complete results are obtained in special cases, like sets defined by binomial inequalities. We also show that the wild behaviour of certain examples constructed by Krug and by Mondal-Netzer cannot occur in a toric setting.Comment: 19 pages; minor updates and correction

    Geometry of physical dispersion relations

    Full text link
    To serve as a dispersion relation, a cotangent bundle function must satisfy three simple algebraic properties. These conditions are derived from the inescapable physical requirements to have predictive matter field dynamics and an observer-independent notion of positive energy. Possible modifications of the standard relativistic dispersion relation are thereby severely restricted. For instance, the dispersion relations associated with popular deformations of Maxwell theory by Gambini-Pullin or Myers-Pospelov are not admissible.Comment: revised version, new section on applications added, 46 pages, 9 figure

    Some Applications of Polynomial Optimization in Operations Research and Real-Time Decision Making

    Full text link
    We demonstrate applications of algebraic techniques that optimize and certify polynomial inequalities to problems of interest in the operations research and transportation engineering communities. Three problems are considered: (i) wireless coverage of targeted geographical regions with guaranteed signal quality and minimum transmission power, (ii) computing real-time certificates of collision avoidance for a simple model of an unmanned vehicle (UV) navigating through a cluttered environment, and (iii) designing a nonlinear hovering controller for a quadrotor UV, which has recently been used for load transportation. On our smaller-scale applications, we apply the sum of squares (SOS) relaxation and solve the underlying problems with semidefinite programming. On the larger-scale or real-time applications, we use our recently introduced "SDSOS Optimization" techniques which result in second order cone programs. To the best of our knowledge, this is the first study of real-time applications of sum of squares techniques in optimization and control. No knowledge in dynamics and control is assumed from the reader

    Improving Efficiency and Scalability of Sum of Squares Optimization: Recent Advances and Limitations

    Full text link
    It is well-known that any sum of squares (SOS) program can be cast as a semidefinite program (SDP) of a particular structure and that therein lies the computational bottleneck for SOS programs, as the SDPs generated by this procedure are large and costly to solve when the polynomials involved in the SOS programs have a large number of variables and degree. In this paper, we review SOS optimization techniques and present two new methods for improving their computational efficiency. The first method leverages the sparsity of the underlying SDP to obtain computational speed-ups. Further improvements can be obtained if the coefficients of the polynomials that describe the problem have a particular sparsity pattern, called chordal sparsity. The second method bypasses semidefinite programming altogether and relies instead on solving a sequence of more tractable convex programs, namely linear and second order cone programs. This opens up the question as to how well one can approximate the cone of SOS polynomials by second order representable cones. In the last part of the paper, we present some recent negative results related to this question.Comment: Tutorial for CDC 201
    corecore