5,046 research outputs found

    A two-phase gradient method for quadratic programming problems with a single linear constraint and bounds on the variables

    Full text link
    We propose a gradient-based method for quadratic programming problems with a single linear constraint and bounds on the variables. Inspired by the GPCG algorithm for bound-constrained convex quadratic programming [J.J. Mor\'e and G. Toraldo, SIAM J. Optim. 1, 1991], our approach alternates between two phases until convergence: an identification phase, which performs gradient projection iterations until either a candidate active set is identified or no reasonable progress is made, and an unconstrained minimization phase, which reduces the objective function in a suitable space defined by the identification phase, by applying either the conjugate gradient method or a recently proposed spectral gradient method. However, the algorithm differs from GPCG not only because it deals with a more general class of problems, but mainly for the way it stops the minimization phase. This is based on a comparison between a measure of optimality in the reduced space and a measure of bindingness of the variables that are on the bounds, defined by extending the concept of proportioning, which was proposed by some authors for box-constrained problems. If the objective function is bounded, the algorithm converges to a stationary point thanks to a suitable application of the gradient projection method in the identification phase. For strictly convex problems, the algorithm converges to the optimal solution in a finite number of steps even in case of degeneracy. Extensive numerical experiments show the effectiveness of the proposed approach.Comment: 30 pages, 17 figure

    An Algorithm for Global Maximization of Secrecy Rates in Gaussian MIMO Wiretap Channels

    Full text link
    Optimal signaling for secrecy rate maximization in Gaussian MIMO wiretap channels is considered. While this channel has attracted a significant attention recently and a number of results have been obtained, including the proof of the optimality of Gaussian signalling, an optimal transmit covariance matrix is known for some special cases only and the general case remains an open problem. An iterative custom-made algorithm to find a globally-optimal transmit covariance matrix in the general case is developed in this paper, with guaranteed convergence to a \textit{global} optimum. While the original optimization problem is not convex and hence difficult to solve, its minimax reformulation can be solved via the convex optimization tools, which is exploited here. The proposed algorithm is based on the barrier method extended to deal with a minimax problem at hand. Its convergence to a global optimum is proved for the general case (degraded or not) and a bound for the optimality gap is given for each step of the barrier method. The performance of the algorithm is demonstrated via numerical examples. In particular, 20 to 40 Newton steps are already sufficient to solve the sufficient optimality conditions with very high precision (up to the machine precision level), even for large systems. Even fewer steps are required if the secrecy capacity is the only quantity of interest. The algorithm can be significantly simplified for the degraded channel case and can also be adopted to include the per-antenna power constraints (instead or in addition to the total power constraint). It also solves the dual problem of minimizing the total power subject to the secrecy rate constraint.Comment: accepted by IEEE Transactions on Communication

    On the Burer-Monteiro method for general semidefinite programs

    Full text link
    Consider a semidefinite program (SDP) involving an n×nn\times n positive semidefinite matrix XX. The Burer-Monteiro method uses the substitution X=YYTX=Y Y^T to obtain a nonconvex optimization problem in terms of an n×pn\times p matrix YY. Boumal et al. showed that this nonconvex method provably solves equality-constrained SDPs with a generic cost matrix when p≳2mp \gtrsim \sqrt{2m}, where mm is the number of constraints. In this note we extend their result to arbitrary SDPs, possibly involving inequalities or multiple semidefinite constraints. We derive similar guarantees for a fixed cost matrix and generic constraints. We illustrate applications to matrix sensing and integer quadratic minimization.Comment: 10 page
    • …
    corecore