16 research outputs found

    Optimal succinct representations of planar maps

    Get PDF
    This paper addresses the problem of representing the connectivity information of geometric objects using as little memory as possible. As opposed to raw compression issues, the focus is here on designing data structures that preserve the possibility of answering incidence queries in constant time. We propose in particular the first optimal representations for 3-connected planar graphs and triangulations, which are the most standard classes of graphs underlying meshes with spherical topology. Optimal means that these representations asymptotically match the respective entropy of the two classes, namely 2 bits per edge for 3-connected planar graphs, and 1.62 bits per triangle or equivalently 3.24 bits per vertex for triangulations

    Compact data structures for triangulations

    Get PDF
    International audienceThe main problem consists in designing space-efficient data structures allowing to represent the connectivity of triangle meshes while supporting fast navigation and local updates

    2D Triangulation Representation Using Stable Catalogs

    Get PDF
    The problem of representing triangulations has been widely studied to obtain convenient encodings and space efficient data structures. In this paper we propose a new practical approach to reduce the amount of space needed to represent in main memory an arbitrary triangulation, while maintaining constant time for some basic queries. This work focuses on the connectivity information of the triangulation, rather than the geometry information (vertex coordinates), since the combinatorial data represents the main storage part of the structure. The main idea is to gather triangles into patches, to reduce the number of pointers by eliminating the internal pointers in the patches and reducing the multiple references to vertices. To accomplish this, we define stable catalogs of patches that are close under basic standard update operations such as insertion and deletion of vertices, and edge flips. We present some bounds and results concerning special catalogs, and some experimental results for the quadrilateral-triangle catalog

    Schnyder woods for higher genus triangulated surfaces, with applications to encoding

    Full text link
    Schnyder woods are a well-known combinatorial structure for plane triangulations, which yields a decomposition into 3 spanning trees. We extend here definitions and algorithms for Schnyder woods to closed orientable surfaces of arbitrary genus. In particular, we describe a method to traverse a triangulation of genus gg and compute a so-called gg-Schnyder wood on the way. As an application, we give a procedure to encode a triangulation of genus gg and nn vertices in 4n+O(glog(n))4n+O(g \log(n)) bits. This matches the worst-case encoding rate of Edgebreaker in positive genus. All the algorithms presented here have execution time O((n+g)g)O((n+g)g), hence are linear when the genus is fixed.Comment: 27 pages, to appear in a special issue of Discrete and Computational Geometr

    Succinct Data Structures for Families of Interval Graphs

    Full text link
    We consider the problem of designing succinct data structures for interval graphs with nn vertices while supporting degree, adjacency, neighborhood and shortest path queries in optimal time in the Θ(logn)\Theta(\log n)-bit word RAM model. The degree query reports the number of incident edges to a given vertex in constant time, the adjacency query returns true if there is an edge between two vertices in constant time, the neighborhood query reports the set of all adjacent vertices in time proportional to the degree of the queried vertex, and the shortest path query returns a shortest path in time proportional to its length, thus the running times of these queries are optimal. Towards showing succinctness, we first show that at least nlogn2nloglognO(n)n\log{n} - 2n\log\log n - O(n) bits are necessary to represent any unlabeled interval graph GG with nn vertices, answering an open problem of Yang and Pippenger [Proc. Amer. Math. Soc. 2017]. This is augmented by a data structure of size nlogn+O(n)n\log{n} +O(n) bits while supporting not only the aforementioned queries optimally but also capable of executing various combinatorial algorithms (like proper coloring, maximum independent set etc.) on the input interval graph efficiently. Finally, we extend our ideas to other variants of interval graphs, for example, proper/unit interval graphs, k-proper and k-improper interval graphs, and circular-arc graphs, and design succinct/compact data structures for these graph classes as well along with supporting queries on them efficiently

    Counting coloured planar maps: differential equations

    Full text link
    We address the enumeration of q-coloured planar maps counted bythe number of edges and the number of monochromatic edges. We prove that the associated generating function is differentially algebraic,that is, satisfies a non-trivial polynomial differential equation withrespect to the edge variable. We give explicitly a differential systemthat characterizes this series. We then prove a similar result for planar triangulations, thus generalizing a result of Tutte dealing with their proper q-colourings. Instatistical physics terms, we solvethe q-state Potts model on random planar lattices. This work follows a first paper by the same authors, where the generating functionwas proved to be algebraic for certain values of q,including q=1, 2 and 3. It isknown to be transcendental in general. In contrast, our differential system holds for an indeterminate q.For certain special cases of combinatorial interest (four colours; properq-colourings; maps equipped with a spanning forest), we derive from this system, in the case of triangulations, an explicit differential equation of order 2 defining the generating function. For general planar maps, we also obtain a differential equation of order 3 for the four-colour case and for the self-dual Potts model.Comment: 43 p

    Succinct representation for (non)deterministic finite automata

    Get PDF
    International audienceNon)-Deterministic finite automata are one of the simplest models of computation studied in automata theory. Here we study them through the lens of succinct data structures. Towards this goal, we design a data structure for any deterministic automaton D having n states over a σ-letter alphabet using (σ − 1)n log n(1 + o(1)) bits, that determines, given a string x, whether D accepts x in optimal O (|x|) time. We also consider the case when there are N < σ n non-failure transitions, and obtain various time-space trade-offs. Here some of our results are better than the recent work of Cotumaccio and Prezza (SODA 2021). We also exhibit a data structure for non-deterministic automaton N using σ n 2 + n bits that takes O (n 2 |x|) time for string membership checking. Finally, we also provide time and space efficient algorithms for performing several standard operations on the languages accepted by finite automata
    corecore