557 research outputs found

    Successive Wyner-Ziv Coding Scheme and its Application to the Quadratic Gaussian CEO Problem

    Full text link
    We introduce a distributed source coding scheme called successive Wyner-Ziv coding. We show that any point in the rate region of the quadratic Gaussian CEO problem can be achieved via the successive Wyner-Ziv coding. The concept of successive refinement in the single source coding is generalized to the distributed source coding scenario, which we refer to as distributed successive refinement. For the quadratic Gaussian CEO problem, we establish a necessary and sufficient condition for distributed successive refinement, where the successive Wyner-Ziv coding scheme plays an important role.Comment: 28 pages, submitted to the IEEE Transactions on Information Theor

    Capacity of a multi-output channel with distributed processing

    Full text link

    Successive structuring of source coding algorithms for data fusion, buffering, and distribution in networks

    Get PDF
    Supervised by Gregory W. Wornell.Also issued as Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 2002.Includes bibliographical references (p. 159-165).(cont.) We also explore the interactions between source coding and queue management in problems of buffering and distributing distortion-tolerant data. We formulate a general queuing model relevant to numerous communication scenarios, and develop a bound on the performance of any algorithm. We design an adaptive buffer-control algorithm for use in dynamic environments and under finite memory limitations; its performance closely approximates the bound. Our design uses multiresolution source codes that exploit the data's distortion-tolerance in minimizing end-to-end distortion. Compared to traditional approaches, the performance gains of the adaptive algorithm are significant - improving distortion, delay, and overall system robustness.by Stark Christiaan Draper

    Binary CEO Problem under Log-Loss with BSC Test-Channel Model

    Full text link
    In this paper, we propose an efficient coding scheme for the two-link binary Chief Executive Officer (CEO) problem under logarithmic loss criterion. The exact rate-distortion bound for a two-link binary CEO problem under the logarithmic loss has been obtained by Courtade and Weissman. We propose an encoding scheme based on compound LDGM-LDPC codes to achieve the theoretical bounds. In the proposed encoding, a binary quantizer using LDGM codes and a syndrome-coding employing LDPC codes are applied. An iterative joint decoding is also designed as a fusion center. The proposed CEO decoder is based on the sum-product algorithm and a soft estimator.Comment: 5 pages. arXiv admin note: substantial text overlap with arXiv:1801.0043

    Fundamental limits of distributed tracking

    Get PDF
    Consider the following communication scenario. An n-dimensional source with memory is observed by K isolated encoders via parallel channels, who causally compress their observations to transmit to the decoder via noiseless rate-constrained links. At each time instant, the decoder receives K new codewords from the observers, combines them with the past received codewords, and produces a minimum- distortion estimate of the latest block of n source symbols. This scenario extends the classical one-shot CEO problem to multiple rounds of communication with communicators maintaining memory of the past.We prove a coding theorem showing that the minimum asymptotically (as n β†’ ∞) achievable sum rate required to achieve a target distortion is equal to the directed mutual information from the observers to the decoder minimized subject to the distortion constraint and the separate encoding constraint. For the Gauss-Markov source observed via K parallel AWGN channels, we solve that minimal directed mutual information problem, thereby establishing the minimum asymptotically achievable sum rate. Finally, we explicitly bound the rate loss due to a lack of communication among the observers; that bound is attained with equality in the case of identical observation channels.The general coding theorem is proved via a new nonasymptotic bound that uses stochastic likelihood coders and whose asymptotic analysis yields an extension of the Berger-Tung inner bound to the causal setting. The analysis of the Gaussian case is facilitated by reversing the channels of the observers
    • …
    corecore