9 research outputs found

    A Comparison of a Single Receiver and a Multi-Receiver Techniques to Mitigate Partial Band Interference

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. We survey recent work in interference mitigation as background motivation to develop a spatial diversity receiver for use in underwater networks and compare this novel multi-receiver interference mitigation strategy with a recently developed single receiver interference mitigation algorithm using experimental data collected from the underwater acoustic network at the Atlantic Underwater Test and Evaluation Center. The network consists of multiple distributed cabled hydrophones that receive data transmitted over a time-varying multipath channel in the presence of partial band interference produced by interfering active sonar signals. In operational networks, many dropped messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation

    Leveraging Spatial Diversity to Mitigate Partial Band Interference in Undersea Networks through Waveform Reconstruction

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. We survey recent work in interference mitigation as background motivation to develop a spatial diversity receiver for use in underwater networks. The network consists of multiple distributed cabled hydrophones that receive data transmitted over a time-varying multipath channel in the presence of partial band interference produced by interfering active sonar signals as well as marine mammal vocalizations. In operational networks, many “dropped” messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation. Our algorithm has been tested on simulated data and is shown to work on an example from a recent undersea experiment

    Applying Spatial Diversity to Mitigate Partial Band Interference in Undersea Networks

    Get PDF
    Many acoustic channels suffer from interference which is neither narrowband nor impulsive. This relatively long duration partial band interference can be particularly detrimental to system performance. We survey recent work in interference mitigation and orthogonal frequency division multiplexing (OFDM) as background motivation to develop a spatial diversity receiver for use in underwater networks. The network consists of multiple distributed cabled hydrophones that receive data transmitted over a time-varying multipath channel in the presence of partial band interference produced by interfering active sonar signals as well as marine mammal vocalizations. In operational networks, many “dropped” messages are lost due to partial band interference which corrupts different portions of the received signal depending on the relative position of the interferers, information source and receivers due to the slow speed of propagation

    Prototype of a Dsp-Based Instrument for In-Service Wireless Transmitter Power Measurement

    Get PDF
    Abstract A prototype of a DSP-based instrument for in-service transmitter power measurements is presented. The instrument implements a signal-selective algorithm for power measurements that is suitable for use in wireless environments, where possible uncontrolled interfering sources are present in the radio channel and are overlapped to the signal emitted by the transmitter under test, possibly in both time and frequency domain. The measurement method exploits the principles of cyclic spectral analysis, which are briefly recalled in the paper. Potentialities, as well as limitations of the prototype use are discussed, and the results of experiments with both modulated and unmodulated interfering sources are presented

    Successive NBI cancellation using soft decisions for OFDM systems

    No full text
    corecore