57,498 research outputs found
Synchronization of electrically coupled resonate-and-fire neurons
Electrical coupling between neurons is broadly present across brain areas and
is typically assumed to synchronize network activity. However, intrinsic
properties of the coupled cells can complicate this simple picture. Many cell
types with strong electrical coupling have been shown to exhibit resonant
properties, and the subthreshold fluctuations arising from resonance are
transmitted through electrical synapses in addition to action potentials. Using
the theory of weakly coupled oscillators, we explore the effect of both
subthreshold and spike-mediated coupling on synchrony in small networks of
electrically coupled resonate-and-fire neurons, a hybrid neuron model with
linear subthreshold dynamics and discrete post-spike reset. We calculate the
phase response curve using an extension of the adjoint method that accounts for
the discontinuity in the dynamics. We find that both spikes and resonant
subthreshold fluctuations can jointly promote synchronization. The subthreshold
contribution is strongest when the voltage exhibits a significant post-spike
elevation in voltage, or plateau. Additionally, we show that the geometry of
trajectories approaching the spiking threshold causes a "reset-induced shear"
effect that can oppose synchrony in the presence of network asymmetry, despite
having no effect on the phase-locking of symmetrically coupled pairs
Resonant spike propagation in coupled neurons with subthreshold activity
Màster en Biofísica, curs 2006-2007Chemical coupling between neurons is only active when the presynaptic neuron is firing, and thus it does not allow for the propagation of subthreshold activity. Electrical coupling via gap junctions, on the other hand, is also ubiquitous and, due to its diffusive nature, transmits both subthreshold and suprathreshold activity between neurons. We study theoretically the propagation of spikes between two neurons that exhibit subthreshold oscillations, and which are coupled via both chemical synapses and gap junctions. Due to the electrical coupling, the periodic subthreshold activity is synchronized in the two neurons, and affects propagation of spikes in such a way that for certain values of the delay in the synaptic coupling, propagation is not possible. This effect could provide a mechanism for the modulation of information transmission in neuronal networks
Stimulus - response curves of a neuronal model for noisy subthreshold oscillations and related spike generation
We investigate the stimulus-dependent tuning properties of a noisy ionic
conductance model for intrinsic subthreshold oscillations in membrane potential
and associated spike generation. On depolarization by an applied current, the
model exhibits subthreshold oscillatory activity with occasional spike
generation when oscillations reach the spike threshold. We consider how the
amount of applied current, the noise intensity, variation of maximum
conductance values and scaling to different temperature ranges alter the
responses of the model with respect to voltage traces, interspike intervals and
their statistics and the mean spike frequency curves. We demonstrate that
subthreshold oscillatory neurons in the presence of noise can sensitively and
also selectively be tuned by stimulus-dependent variation of model parameters.Comment: 19 pages, 7 figure
Reconciling threshold and subthreshold expansions for pion-nucleon scattering
Heavy-baryon chiral perturbation theory (ChPT) at one loop fails in relating
the pion-nucleon amplitude in the physical region and for subthreshold
kinematics due to loop effects enhanced by large low-energy constants. Studying
the chiral convergence of threshold and subthreshold parameters up to fourth
order in the small-scale expansion, we address the question to what extent this
tension can be mitigated by including the as an explicit degree
of freedom and/or using a covariant formulation of baryon ChPT. We find that
the inclusion of the indeed reduces the low-energy constants to more
natural values and thereby improves consistency between threshold and
subthreshold kinematics. In addition, even in the -less theory the
resummation of corrections in the covariant scheme improves the results
markedly over the heavy-baryon formulation, in line with previous observations
in the single-baryon sector of ChPT that so far have evaded a profound
theoretical explanation.Comment: 10 pages, 4 tables, Mathematica notebook with the analytic
expressions for threshold and subthreshold parameters included as
supplementary material; journal versio
Indirect techniques in nuclear astrophysics. Asymptotic Normalization Coefficient and Trojan Horse
Owing to the presence of the Coulomb barrier at astrophysically relevant
kinetic energies it is very difficult, or sometimes impossible, to measure
astrophysical reaction rates in the laboratory. That is why different indirect
techniques are being used along with direct measurements. Here we address two
important indirect techniques, the asymptotic normalization coefficient (ANC)
and the Trojan Horse (TH) methods. We discuss the application of the ANC
technique for calculation of the astrophysical processes in the presence of
subthreshold bound states, in particular, two different mechanisms are
discussed: direct capture to the subthreshold state and capture to the
low-lying bound states through the subthreshold state, which plays the role of
the subthreshold resonance. The ANC technique can also be used to determine the
interference sign of the resonant and nonresonant (direct) terms of the
reaction amplitude. The TH method is unique indirect technique allowing one to
measure astrophysical rearrangement reactions down to astrophysically relevant
energies. We explain why there is no Coulomb barrier in the sub-process
amplitudes extracted from the TH reaction. The expressions for the TH amplitude
for direct and resonant cases are presented.Comment: Invited talk on the Conference "Nuclear Physics in Astrophysics II",
Debrecen, Hungary, 16-20 May, 200
Threshold meson production and cosmic ray transport
An interesting accident of nature is that the peak of the cosmic ray
spectrum, for both protons and heavier nuclei, occurs near the pion production
threshold. The Boltzmann transport equation contains a term which is the cosmic
ray flux multiplied by the cross section. Therefore when considering pion and
kaon production from proton-proton reactions, small cross sections at low
energy can be as important as larger cross sections at higher energy. This is
also true for subthreshold kaon production in nuclear collisions, but not for
subthreshold pion production.Comment: 9 pages, 1 figur
- …
