280 research outputs found

    Substructuring Preconditioners for h-p Mortar FEM

    Get PDF
    International audienceWe build and analyze a substructuring preconditioner for the mortar method in the h-p finite element framework. Particular attention is given to the construction of the coarse component of the preconditioner in this framework, in which continuity at the cross points is not required. Two variants are proposed: the first one is an improved version of a coarse preconditioner already presented in [12]. The second is new and is built by using a Discontinuous Galerkin interior penalty method as coarse problem. A bound of the condition number is proven for both variants and their efficiency and scalability is illustrated by numerical experiments

    Nonoverlapping domain decomposition preconditioners for discontinuous Galerkin approximations of Hamilton--Jacobi--Bellman equations

    Get PDF
    We analyse a class of nonoverlapping domain decomposition preconditioners for nonsymmetric linear systems arising from discontinuous Galerkin finite element approximation of fully nonlinear Hamilton--Jacobi--Bellman (HJB) partial differential equations. These nonsymmetric linear systems are uniformly bounded and coercive with respect to a related symmetric bilinear form, that is associated to a matrix A\mathbf{A}. In this work, we construct a nonoverlapping domain decomposition preconditioner P\mathbf{P}, that is based on A\mathbf{A}, and we then show that the effectiveness of the preconditioner for solving the} nonsymmetric problems can be studied in terms of the condition number κ(P−1A)\kappa(\mathbf{P}^{-1}\mathbf{A}). In particular, we establish the bound κ(P−1A)≲1+p6H3/q3h3\kappa(\mathbf{P}^{-1}\mathbf{A}) \lesssim 1+ p^6 H^3 /q^3 h^3, where HH and hh are respectively the coarse and fine mesh sizes, and qq and pp are respectively the coarse and fine mesh polynomial degrees. This represents the first such result for this class of methods that explicitly accounts for the dependence of the condition number on qq; our analysis is founded upon an original optimal order approximation result between fine and coarse discontinuous finite element spaces. Numerical experiments demonstrate the sharpness of this bound. Although the preconditioners are not robust with respect to the polynomial degree, our bounds quantify the effect of the coarse and fine space polynomial degrees. Furthermore, we show computationally that these methods are effective in practical applications to nonsymmetric, fully nonlinear HJB equations under hh-refinement for moderate polynomial degrees

    Domain-decomposed preconditionings for transport operators

    Get PDF
    The performance was tested of five different interface preconditionings for domain decomposed convection diffusion problems, including a novel one known as the spectral probe, while varying mesh parameters, Reynolds number, ratio of subdomain diffusion coefficients, and domain aspect ratio. The preconditioners are representative of the range of practically computable possibilities that have appeared in the domain decomposition literature for the treatment of nonoverlapping subdomains. It is shown that through a large number of numerical examples that no single preconditioner can be considered uniformly superior or uniformly inferior to the rest, but that knowledge of particulars, including the shape and strength of the convection, is important in selecting among them in a given problem
    • …
    corecore