3 research outputs found

    Chapter Machine Learning Models for Industrial Applications

    Get PDF
    More and more industries are aspiring to achieve a successful production using the known artificial intelligence. Machine learning (ML) stands as a powerful tool for making very accurate predictions, concept classification, intelligent control, maintenance predictions, and even fault and anomaly detection in real time. The use of machine learning models in industry means an increase in efficiency: energy savings, human resources efficiency, increase in product quality, decrease in environmental pollution, and many other advantages. In this chapter, we will present two industrial applications of machine learning. In all cases we achieve interesting results that in practice can be translated as an increase in production efficiency. The solutions described cover areas such as prediction of production quality in an oil and gas refinery and predictive maintenance for micro gas turbines. The results of the experiments carried out show the viability of the solutions

    Machine Learning Models for Industrial Applications

    Get PDF
    More and more industries are aspiring to achieve a successful production using the known artificial intelligence. Machine learning (ML) stands as a powerful tool for making very accurate predictions, concept classification, intelligent control, maintenance predictions, and even fault and anomaly detection in real time. The use of machine learning models in industry means an increase in efficiency: energy savings, human resources efficiency, increase in product quality, decrease in environmental pollution, and many other advantages. In this chapter, we will present two industrial applications of machine learning. In all cases we achieve interesting results that in practice can be translated as an increase in production efficiency. The solutions described cover areas such as prediction of production quality in an oil and gas refinery and predictive maintenance for micro gas turbines. The results of the experiments carried out show the viability of the solutions

    Substructural Surrogates for Learning Decomposable Classification Problems: Implementation and First Results

    No full text
    This paper presents a learning methodology based on a substructural classification model to solve decomposable classification problems. The proposed method consists of three important components: (1) a structural model that represents salient interactions between attributes for a given data, (2) a surrogate model which provides a functional approximation of the output as a function of attributes, and (3) a classification model which predicts the class for new inputs. The structural model is used to infer the functional form of the surrogate and its coefficients are estimated using linear regression methods. The classification model uses a maximally-accurate, least-complex surrogate to predict the output for given inputs. The structural model that yields an optimal classification model is searched using an iterative greedy search heuristic. Results show that the proposed method successfully detects key variable interactions in hierarchical problems, group them in linkages groups, and build maximally accurate classification models. The initial results on non-trivial hierarchical test problems indicate that the proposed method holds promise and have also shed light on several improvements to enhance the capabilities of the proposed method.
    corecore