4,558 research outputs found
Differences in n-type doping efficiency between Al- and Ga-ZnO films
A careful and wide comparison between Al and Ga as substitutional dopants in the ZnO wurtzite structure is presented. Both cations behave as n-type dopants and their inclusion improves the optical and electrical properties of the ZnO matrix, making it more transparent in the visible range and rising up its electrical conductivity. However, the same dopant/Zn ratio leads to a very different doping efficiency when comparing Al and Ga, being the Ga cation a more effective dopant of the ZnO film. The measured differences between Al- and Ga-doped films are explained with the hypothesis that different quantities of these dopant cations are able to enter substitutionally in the ZnO matrix. Ga cations seem to behave as perfect substitutional dopants, while Al cation might occupy either substitutional or interstitial sites. Moreover, the subsequent charge balance after doping appear to be related with the formation of different intrinsic defects that depends on the dopant cation. The knowledge of the doped-ZnO films microstructure is a crucial step to optimize the deposition of transparent conducting electrodes for solar cells, displays, and other photoelectronic devices.Ministerio de Ciencia e Innovación TEC2007-60996, MAT2008-06858-C02-02, MAT2008- 06330, TEC2010-16700FUNCOAT CSD2008-00023- CONSOLIDER INGENIOSonderforschungsbereich SFB 76
A Type-Theoretic Approach to Structural Resolution
Structural resolution (or S-resolution) is a newly proposed alternative to
SLD-resolution that allows a systematic separation of derivations into
term-matching and unification steps. Productive logic programs are those for
which term-matching reduction on any query must terminate. For productive
programs with coinductive meaning, finite term-rewriting reductions can be seen
as measures of observation in an infinite derivation. Ability of handling
corecursion in a productive way is an attractive computational feature of
S-resolution.
In this paper, we make first steps towards a better conceptual understanding
of operational properties of S-resolution as compared to SLD-resolution. To
this aim, we propose a type system for the analysis of both SLD-resolution and
S-resolution.
We formulate S-resolution and SLD-resolution as reduction systems, and show
their soundness relative to the type system. One of the central methods of this
paper is realizability transformation, which makes logic programs productive
and non-overlapping. We show that S-resolution and SLD-resolution are only
equivalent for programs with these two properties.Comment: LOPSTR 201
Tuning independently Fermi energy and spin splitting in Rashba systems: Ternary surface alloys on Ag(111)
By detailed first-principles calculations we show that the Fermi energy and
the Rashba splitting in disordered ternary surface alloys (BiPbSb)/Ag(111) can
be independently tuned by choosing the concentrations of Bi and Pb. The
findings are explained by three fundamental mechanisms, namely the relaxation
of the adatoms, the strength of the atomic spin-orbit coupling, and band
filling. By mapping the Rashba characteristics,i.e.the splitting and the Rashba
energy, and the Fermi energy of the surface states in the complete range of
concentrations. Our results suggest to investigate experimentally effects which
rely on the Rashba spin-orbit coupling in dependence on spin-orbit splitting
and band filling.Comment: 11 pages, 3 figure
Ab initio Study of Luminescence in Ce-doped LuSiO: The Role of Oxygen Vacancies on Emission Color and Thermal Quenching Behavior
We study from first principles the luminescence of LuSiO:Ce
(LSO:Ce), a scintillator widely used in medical imaging applications, and
establish the crucial role of oxygen vacancies (V) in the generated
spectrum. The excitation energy, emission energy and Stokes shift of its
luminescent centers are simulated through a constrained density-functional
theory method coupled with a SCF analysis of total energies, and
compared with experimental spectra. We show that the high-energy emission band
comes from a single Ce-based luminescent center, while the large experimental
spread of the low-energy emission band originates from a whole set of different
Ce-V complexes together with the other Ce-based luminescent center.
Further, the luminescence thermal quenching behavior is analyzed. The
crossover mechanism is found to be very unlikely, with a large crossing energy
barrier (E) in the one-dimensional model. The alternative mechanism
usually considered, namely the electron auto-ionization, is also shown to be
unlikely. In this respect, we introduce a new methodology in which the
time-consuming accurate computation of the band gap for such models is
bypassed. We emphasize the usually overlooked role of the differing geometry
relaxation in the excited neutral electronic state Ce and in the
ionized electronic state Ce. The results indicate that such electron
auto-ionization cannot explain the thermal stability difference between the
high- and low-energy emission bands. Finally, a hole auto-ionization process is
proposed as a plausible alternative. With the already well-established excited
state characterization methodology, the approach to color center identification
and thermal quenching analysis proposed here can be applied to other
luminescent materials in the presence of intrinsic defects.Comment: 13 pages, 8 figures, accepted by Phys. Rev. Material
Modal Predicates
Despite the wide acceptance of standard modal logic, there has always been a temptation to think that ordinary modal discourse may be correctly analyzed and adequately represented in terms of predicates rather than in terms of operators. The aim of the formal model outlined in this paper is to capture what I take to be the only plausible sense in which ‘possible’ and ‘necessary’ can be treated as predicates. The model is built by enriching the language of standard modal logic with a quantificational apparatus that is “substitutional” rather than “objectual”, and by obtaining from the language so enriched another language in which constants for such predicates apply to singular terms that stand for propositions
Scaling Behaviour and Complexity of the Portevin-Le Chatelier Effect
The plastic deformation of dilute alloys is often accompanied by plastic
instabilities due to dynamic strain aging and dislocation interaction. The
repeated breakaway of dislocations from and their recapture by solute atoms
leads to stress serrations and localized strain in the strain controlled
tensile tests, known as the Portevin-Le Chatelier (PLC) effect. In this present
work, we analyse the stress time series data of the observed PLC effect in the
constant strain rate tensile tests on Al-2.5%Mg alloy for a wide range of
strain rates at room temperature. The scaling behaviour of the PLC effect was
studied using two complementary scaling analysis methods: the finite variance
scaling method and the diffusion entropy analysis. From these analyses we could
establish that in the entire span of strain rates, PLC effect showed Levy walk
property. Moreover, the multiscale entropy analysis is carried out on the
stress time series data observed during the PLC effect to quantify the
complexity of the distinct spatiotemporal dynamical regimes. It is shown that
for the static type C band, the entropy is very low for all the scales compared
to the hopping type B and the propagating type A bands. The results are
interpreted considering the time and length scales relevant to the effect.Comment: 35 pages, 6 figure
The 1900 Turn in Bertrand Russell’s Logic, the Emergence of his Paradox, and the Way Out
Russell’s initial project in philosophy (1898) was to make mathematics rigorous reducing it to logic. Before August 1900, however, Russell’s logic was nothing but mereology. First, his acquaintance with Peano’s ideas in August 1900 led him to discard the part-whole logic and accept a kind of intensional predicate logic instead. Among other things, the predicate logic helped Russell embrace a technique of treating the paradox of infinite numbers with the help of a singular concept, which he called ‘denoting phrase’. Unfortunately, a new paradox emerged soon: that of classes. The main contention of this paper is that Russell’s new conception only transferred the paradox of infinity from the realm of infinite numbers to that of class-inclusion.
Russell’s long-elaborated solution to his paradox developed between 1905 and 1908 was nothing but to set aside of some of the ideas he adopted with his turn of August 1900: (i) With the Theory of Descriptions, he reintroduced the complexes we are acquainted with in logic. In this way, he partly restored the pre-August 1900 mereology of complexes and simples. (ii) The elimination of classes, with the help of the ‘substitutional theory’, and of propositions, by means of the Multiple Relation Theory of Judgment, completed this process
Solid solutions of rare earth cations in mesoporous anatase beads and their performances in dye-sensitized solar cells
Solid solutions of the rare earth (RE) cations Pr3+, Nd3+, Sm3+, Gd3+, Er3+ and Yb3+ in anatase TiO2 have been synthesized as mesoporous beads in the concentration range 0.1-0.3% of metal atoms. The solid solutions were have been characterized by XRD, SEM, diffuse reflectance UV-Vis spectroscopy, BET and BJH surface analysis. All the solid solutions possess high specific surface areas, up to more than 100 m2/g. The amount of adsorbed dye in each photoanode has been determined spectrophotometrically. All the samples were tested as photoanodes in dye-sensitized solar cells (DSSCs) using N719 as dye and a nonvolatile, benzonitrile based electrolyte. All the cells were have been tested by conversion efficiency (J-V), quantum efficiency (IPCE), electrochemical impedance spectroscopy (EIS) and dark current measurements. While lighter RE cations (Pr3+, Nd3+) limit the performance of DSSCs compared to pure anatase mesoporous beads, cations from Sm3+ onwards enhance the performance of the devices. A maximum conversion efficiency of 8.7% for Er3+ at a concentration of 0.2% has been achieved. This is a remarkable efficiency value for a DSSC employing N719 dye without co-adsorbents and a nonvolatile electrolyte. For each RE cation the maximum performances are obtained for a concentration of 0.2% metal atoms. © 2015, Nature Publishing Group. All rights reserved
- …
