4 research outputs found

    Improved 3D MR Image Acquisition and Processing in Congenital Heart Disease

    Get PDF
    Congenital heart disease (CHD) is the most common type of birth defect, affecting about 1% of the population. MRI is an essential tool in the assessment of CHD, including diagnosis, intervention planning and follow-up. Three-dimensional MRI can provide particularly rich visualization and information. However, it is often complicated by long scan times, cardiorespiratory motion, injection of contrast agents, and complex and time-consuming postprocessing. This thesis comprises four pieces of work that attempt to respond to some of these challenges. The first piece of work aims to enable fast acquisition of 3D time-resolved cardiac imaging during free breathing. Rapid imaging was achieved using an efficient spiral sequence and a sparse parallel imaging reconstruction. The feasibility of this approach was demonstrated on a population of 10 patients with CHD, and areas of improvement were identified. The second piece of work is an integrated software tool designed to simplify and accelerate the development of machine learning (ML) applications in MRI research. It also exploits the strengths of recently developed ML libraries for efficient MR image reconstruction and processing. The third piece of work aims to reduce contrast dose in contrast-enhanced MR angiography (MRA). This would reduce risks and costs associated with contrast agents. A deep learning-based contrast enhancement technique was developed and shown to improve image quality in real low-dose MRA in a population of 40 children and adults with CHD. The fourth and final piece of work aims to simplify the creation of computational models for hemodynamic assessment of the great arteries. A deep learning technique for 3D segmentation of the aorta and the pulmonary arteries was developed and shown to enable accurate calculation of clinically relevant biomarkers in a population of 10 patients with CHD

    Individualised, interpretable and reproducible computer-aided diagnosis of dementia: towards application in clinical practice

    Get PDF
    Neuroimaging offers an unmatched description of the brain’s structure and physiology, but the information it provides is not easy to extract and interpret. A popular way to extract meaningful information from brain images is to use computational methods based on machine learning and deep learning to predict the current or future diagnosis of a patient. A large number of these approaches have been dedicated to the computer-aided diagnosis of dementia, and more specifically of Alzheimer's disease. However, only a few are translated to the clinic. This can be explained by different factors such as the lack of rigorous validation of these approaches leading to over-optimistic performance and their lack of reproducibility, but also the limited interpretability of these methods and their limited generalisability when moving from highly controlled research data to routine clinical data. This manuscript describes how we tried to address these limitations.We have proposed reproducible frameworks for the evaluation of Alzheimer's disease classification methods and developed two open-source software platforms for clinical neuroimaging studies (Clinica) and neuroimaging processing with deep learning (ClinicaDL). We have implemented and assessed the robustness of a visualisation method aiming to interpret convolutional neural networks and used it to study the stability of the network training. We concluded that, currently, combining a convolutional neural networks classifier with an interpretability method may not constitute a robust tool for individual computer-aided diagnosis. As an alternative, we have proposed an approach that detects anomalies in the brain by generating what would be the healthy version of a patient's image and comparing this healthy version with the real image. Finally, we have studied the performance of machine and deep learning algorithms for the computer-aided diagnosis of dementia from images acquired in clinical routine.La neuro-imagerie offre une description inégalée de la structure et de la physiologie du cerveau, mais les informations qu'elle fournit ne sont pas faciles à extraire et à interpréter. Une façon populaire d'extraire des informations pertinentes d'images cérébrales consiste à utiliser des méthodes basées sur l'apprentissage statistique et l'apprentissage profond pour prédire le diagnostic actuel ou futur d'un patient. Un grand nombre de ces approches ont été dédiées au diagnostic assisté par ordinateur de la démence, et plus spécifiquement de la maladie d'Alzheimer. Cependant, seules quelques-unes sont transposées en clinique. Cela peut s'expliquer par différents facteurs tels que l'absence de validation rigoureuse de ces approches conduisant à des performances trop optimistes et à leur manque de reproductibilité, mais aussi l'interprétabilité limitée de ces méthodes et leur généralisation limitée lors du passage de données de recherche hautement contrôlées à des données cliniques de routine. Ce manuscrit décrit comment nous avons tenté de remédier à ces limites.Nous avons proposé des cadres reproductibles pour l'évaluation des méthodes de classification de la maladie d'Alzheimer et développé deux plateformes logicielles open-source pour les études de neuroimagerie clinique (Clinica) et le traitement de la neuroimagerie par apprentissage profond (ClinicaDL). Nous avons implémenté et évalué la robustesse d'une méthode de visualisation visant à interpréter les réseaux neuronaux convolutifs et l'avons utilisée pour étudier la stabilité de l'entraînement du réseau. Nous avons conclu qu'actuellement, la combinaison de réseaux neuronaux convolutifs avec une méthode d'interprétabilité peut ne pas constituer un outil robuste pour le diagnostic individuel assisté par ordinateur. De façon alternative, nous avons proposé une approche qui détecte les anomalies dans le cerveau en générant ce qui serait la version saine de l'image d'un patient et en comparant cette version saine avec l'image réelle. Enfin, nous avons étudié les performances des algorithmes d'apprentissage statistique et profond pour le diagnostic assisté par ordinateur de la démence à partir d'images acquises en routine clinique
    corecore