807 research outputs found

    Privacy-Preserving Distributed Optimization via Subspace Perturbation: A General Framework

    Get PDF
    As the modern world becomes increasingly digitized and interconnected, distributed signal processing has proven to be effective in processing its large volume of data. However, a main challenge limiting the broad use of distributed signal processing techniques is the issue of privacy in handling sensitive data. To address this privacy issue, we propose a novel yet general subspace perturbation method for privacy-preserving distributed optimization, which allows each node to obtain the desired solution while protecting its private data. In particular, we show that the dual variables introduced in each distributed optimizer will not converge in a certain subspace determined by the graph topology. Additionally, the optimization variable is ensured to converge to the desired solution, because it is orthogonal to this non-convergent subspace. We therefore propose to insert noise in the non-convergent subspace through the dual variable such that the private data are protected, and the accuracy of the desired solution is completely unaffected. Moreover, the proposed method is shown to be secure under two widely-used adversary models: passive and eavesdropping. Furthermore, we consider several distributed optimizers such as ADMM and PDMM to demonstrate the general applicability of the proposed method. Finally, we test the performance through a set of applications. Numerical tests indicate that the proposed method is superior to existing methods in terms of several parameters like estimated accuracy, privacy level, communication cost and convergence rate

    DeepSecure: Scalable Provably-Secure Deep Learning

    Get PDF
    This paper proposes DeepSecure, a novel framework that enables scalable execution of the state-of-the-art Deep Learning (DL) models in a privacy-preserving setting. DeepSecure targets scenarios in which neither of the involved parties including the cloud servers that hold the DL model parameters or the delegating clients who own the data is willing to reveal their information. Our framework is the first to empower accurate and scalable DL analysis of data generated by distributed clients without sacrificing the security to maintain efficiency. The secure DL computation in DeepSecure is performed using Yao's Garbled Circuit (GC) protocol. We devise GC-optimized realization of various components used in DL. Our optimized implementation achieves more than 58-fold higher throughput per sample compared with the best-known prior solution. In addition to our optimized GC realization, we introduce a set of novel low-overhead pre-processing techniques which further reduce the GC overall runtime in the context of deep learning. Extensive evaluations of various DL applications demonstrate up to two orders-of-magnitude additional runtime improvement achieved as a result of our pre-processing methodology. This paper also provides mechanisms to securely delegate GC computations to a third party in constrained embedded settings

    Privacy-Preserving Distributed Processing Over Networks

    Get PDF

    Low-complexity Multiclass Encryption by Compressed Sensing

    Get PDF
    The idea that compressed sensing may be used to encrypt information from unauthorised receivers has already been envisioned, but never explored in depth since its security may seem compromised by the linearity of its encoding process. In this paper we apply this simple encoding to define a general private-key encryption scheme in which a transmitter distributes the same encoded measurements to receivers of different classes, which are provided partially corrupted encoding matrices and are thus allowed to decode the acquired signal at provably different levels of recovery quality. The security properties of this scheme are thoroughly analysed: firstly, the properties of our multiclass encryption are theoretically investigated by deriving performance bounds on the recovery quality attained by lower-class receivers with respect to high-class ones. Then we perform a statistical analysis of the measurements to show that, although not perfectly secure, compressed sensing grants some level of security that comes at almost-zero cost and thus may benefit resource-limited applications. In addition to this we report some exemplary applications of multiclass encryption by compressed sensing of speech signals, electrocardiographic tracks and images, in which quality degradation is quantified as the impossibility of some feature extraction algorithms to obtain sensitive information from suitably degraded signal recoveries.Comment: IEEE Transactions on Signal Processing, accepted for publication. Article in pres

    Speech Scrambling Based on Wavelet Transform

    Get PDF

    Joint Quantization and Diffusion for Compressed Sensing Measurements of Natural Images

    Full text link
    Recent research advances have revealed the computational secrecy of the compressed sensing (CS) paradigm. Perfect secrecy can also be achieved by normalizing the CS measurement vector. However, these findings are established on real measurements while digital devices can only store measurements at a finite precision. Based on the distribution of measurements of natural images sensed by structurally random ensemble, a joint quantization and diffusion approach is proposed for these real-valued measurements. In this way, a nonlinear cryptographic diffusion is intrinsically imposed on the CS process and the overall security level is thus enhanced. Security analyses show that the proposed scheme is able to resist known-plaintext attack while the original CS scheme without quantization cannot. Experimental results demonstrate that the reconstruction quality of our scheme is comparable to that of the original one.Comment: 4 pages, 4 figure
    • …
    corecore