3,595 research outputs found

    Multi-body Non-rigid Structure-from-Motion

    Get PDF
    Conventional structure-from-motion (SFM) research is primarily concerned with the 3D reconstruction of a single, rigidly moving object seen by a static camera, or a static and rigid scene observed by a moving camera --in both cases there are only one relative rigid motion involved. Recent progress have extended SFM to the areas of {multi-body SFM} (where there are {multiple rigid} relative motions in the scene), as well as {non-rigid SFM} (where there is a single non-rigid, deformable object or scene). Along this line of thinking, there is apparently a missing gap of "multi-body non-rigid SFM", in which the task would be to jointly reconstruct and segment multiple 3D structures of the multiple, non-rigid objects or deformable scenes from images. Such a multi-body non-rigid scenario is common in reality (e.g. two persons shaking hands, multi-person social event), and how to solve it represents a natural {next-step} in SFM research. By leveraging recent results of subspace clustering, this paper proposes, for the first time, an effective framework for multi-body NRSFM, which simultaneously reconstructs and segments each 3D trajectory into their respective low-dimensional subspace. Under our formulation, 3D trajectories for each non-rigid structure can be well approximated with a sparse affine combination of other 3D trajectories from the same structure (self-expressiveness). We solve the resultant optimization with the alternating direction method of multipliers (ADMM). We demonstrate the efficacy of the proposed framework through extensive experiments on both synthetic and real data sequences. Our method clearly outperforms other alternative methods, such as first clustering the 2D feature tracks to groups and then doing non-rigid reconstruction in each group or first conducting 3D reconstruction by using single subspace assumption and then clustering the 3D trajectories into groups.Comment: 21 pages, 16 figure

    Shape Interaction Matrix Revisited and Robustified: Efficient Subspace Clustering with Corrupted and Incomplete Data

    Full text link
    The Shape Interaction Matrix (SIM) is one of the earliest approaches to performing subspace clustering (i.e., separating points drawn from a union of subspaces). In this paper, we revisit the SIM and reveal its connections to several recent subspace clustering methods. Our analysis lets us derive a simple, yet effective algorithm to robustify the SIM and make it applicable to realistic scenarios where the data is corrupted by noise. We justify our method by intuitive examples and the matrix perturbation theory. We then show how this approach can be extended to handle missing data, thus yielding an efficient and general subspace clustering algorithm. We demonstrate the benefits of our approach over state-of-the-art subspace clustering methods on several challenging motion segmentation and face clustering problems, where the data includes corrupted and missing measurements.Comment: This is an extended version of our iccv15 pape

    Robust Recovery of Subspace Structures by Low-Rank Representation

    Full text link
    In this work we address the subspace recovery problem. Given a set of data samples (vectors) approximately drawn from a union of multiple subspaces, our goal is to segment the samples into their respective subspaces and correct the possible errors as well. To this end, we propose a novel method termed Low-Rank Representation (LRR), which seeks the lowest-rank representation among all the candidates that can represent the data samples as linear combinations of the bases in a given dictionary. It is shown that LRR well solves the subspace recovery problem: when the data is clean, we prove that LRR exactly captures the true subspace structures; for the data contaminated by outliers, we prove that under certain conditions LRR can exactly recover the row space of the original data and detect the outlier as well; for the data corrupted by arbitrary errors, LRR can also approximately recover the row space with theoretical guarantees. Since the subspace membership is provably determined by the row space, these further imply that LRR can perform robust subspace segmentation and error correction, in an efficient way.Comment: IEEE Trans. Pattern Analysis and Machine Intelligenc

    Distributed Low-rank Subspace Segmentation

    Full text link
    Vision problems ranging from image clustering to motion segmentation to semi-supervised learning can naturally be framed as subspace segmentation problems, in which one aims to recover multiple low-dimensional subspaces from noisy and corrupted input data. Low-Rank Representation (LRR), a convex formulation of the subspace segmentation problem, is provably and empirically accurate on small problems but does not scale to the massive sizes of modern vision datasets. Moreover, past work aimed at scaling up low-rank matrix factorization is not applicable to LRR given its non-decomposable constraints. In this work, we propose a novel divide-and-conquer algorithm for large-scale subspace segmentation that can cope with LRR's non-decomposable constraints and maintains LRR's strong recovery guarantees. This has immediate implications for the scalability of subspace segmentation, which we demonstrate on a benchmark face recognition dataset and in simulations. We then introduce novel applications of LRR-based subspace segmentation to large-scale semi-supervised learning for multimedia event detection, concept detection, and image tagging. In each case, we obtain state-of-the-art results and order-of-magnitude speed ups
    corecore