22 research outputs found

    Contribution to the study of efficient iterative methods for the numerical solution of partial differential equations

    Get PDF
    Multigrid and domain decomposition methods provide efficient algorithms for the numerical solution of partial differential equations arising in the modelling of many applications in Computational Science and Engineering. This manuscript covers certain aspects of modern iterative solution methods for the solution of large-scale problems issued from the discretization of partial differential equations. More specifically, we focus on geometric multigrid methods, non-overlapping substructuring methods and flexible Krylov subspace methods with a particular emphasis on their combination. Firstly, the combination of multigrid and Krylov subspace methods is investigated on a linear partial differential equation modelling wave propagation in heterogeneous media. Secondly, we focus on non-overlapping domain decomposition methods for a specific finite element discretization known as the hp finite element, where unrefinement/refinement is allowed both by decreasing/increasing the step size h or by decreasing/increasing the polynomial degree p of the approximation on each element. Results on condition number bounds for the domain decomposition preconditioned operators are given and illustrated by numerical results on academic problems in two and three dimensions. Thirdly, we review recent advances related to a class of Krylov subspace methods allowing variable preconditioning. We examine in detail flexible Krylov subspace methods including augmentation and/or spectral deflation, where deflation aims at capturing approximate invariant subspace information. We also present flexible Krylov subspace methods for the solution of linear systems with multiple right-hand sides given simultaneously. The efficiency of the numerical methods is demonstrated on challenging applications in seismics requiring the solution of huge linear systems of equations with multiple right-hand sides on parallel distributed memory computers. Finally, we expose current and future prospectives towards the design of efficient algorithms on extreme scale machines for the solution of problems coming from the discretization of partial differential equations

    Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods

    Full text link

    On the parallel scalability of hybrid linear solvers for large 3D problems

    Get PDF
    Large-scale scientific applications and industrial simulations are nowadays fully integrated in many engineering areas. They involve the solution of large sparse linear systems. The use of large high performance computers is mandatory to solve these problems. The main topic of this research work was the study of a numerical technique that had attractive features for an efficient solution of large scale linear systems on large massively parallel platforms. The goal is to develop a high performance hybrid direct/iterative approach for solving large 3D problems. We focus specifically on the associated domain decomposition techniques for the parallel solution of large linear systems. We have investigated several algebraic preconditioning techniques, discussed their numerical behaviours, their parallel implementations and scalabilities. We have compared their performances on a set of 3D grand challenge problems

    Parallel unstructured solvers for linear partial differential equations

    Get PDF
    This thesis presents the development of a parallel algorithm to solve symmetric systems of linear equations and the computational implementation of a parallel partial differential equations solver for unstructured meshes. The proposed method, called distributive conjugate gradient - DCG, is based on a single-level domain decomposition method and the conjugate gradient method to obtain a highly scalable parallel algorithm. An overview on methods for the discretization of domains and partial differential equations is given. The partition and refinement of meshes is discussed and the formulation of the weighted residual method for two- and three-dimensions presented. Some of the methods to solve systems of linear equations are introduced, highlighting the conjugate gradient method and domain decomposition methods. A parallel unstructured PDE solver is proposed and its actual implementation presented. Emphasis is given to the data partition adopted and the scheme used for communication among adjacent subdomains is explained. A series of experiments in processor scalability is also reported. The derivation and parallelization of DCG are presented and the method validated throughout numerical experiments. The method capabilities and limitations were investigated by the solution of the Poisson equation with various source terms. The experimental results obtained using the parallel solver developed as part of this work show that the algorithm presented is accurate and highly scalable, achieving roughly linear parallel speed-up in many of the cases tested

    Numerical solution of saddle point problems

    Full text link

    Hessian Matrix-Free Lagrange-Newton-Krylov-Schur-Schwarz Methods for Elliptic Inverse Problems

    Get PDF
    This study focuses on the solution of inverse problems for elliptic systems. The inverse problem is constructed as a PDE-constrained optimization, where the cost function is the L2 norm of the difference between the measured data and the predicted state variable, and the constraint is an elliptic PDE. Particular examples of the system considered in this stud, are groundwater flow and radiation transport. The inverse problems are typically ill-posed due to error in measurements of the data. Regularization methods are employed to partially alleviate this problem. The PDE-constrained optimization is formulated as the minimization of a Lagrangian functional, formed from the regularized cost function and the discretized PDE, with respect to the parameters, the state variables, and the Lagrange multipliers. Our approach is known as an all at once method. An algorithm is proposed for an inverse problem that is capable of being extended to large scales. To overcome storage limitations, we develop a parallel preconditioned Newton-Krylov method employed in a Hessian-free manner. The preconditioners have an inner-outer structure, taking the form of a Schur complement (block factorization) at the outer level and Schwarz projections at the inner level. However, building an exact Schur complement is prohibitively expensive. Thus, we use Schur complement approximations, including the identity, probing, the Laplacian, the J operator, and a BFGS operator. For exact data the exact Schur complements are superior to the inexact approximations. However, for data with noise the inexact methods are competitive to or even better than the exact in every computational aspect. We also find that nousymmetric forms of the Karush-Kuhn-Tucker matrices and preconditioners are competitive to or better than the symmetric forms that are commonly used in the optimization community. In this study, iterative Tikhonov and Total Variation regularizations are proposed and compared to the standard regularizations and each other. For exact data with jump discontinuities the standard and iterative Total Variation regulations are superior to the standard and iterative Tikhonov regularizations. However, in the case of noisy data the proposed iterative Tikhonov regularizations are superior to the standard and iterative Total Variation methods. We also show that in some cases the iterative regularizations are better than the noniterative. To demonstrate the performance of the algorithm, including the effectiveness of the preconditioners and regularizations, synthetic one- and two-dimensional elliptic inverse problems are solved, and we also compare with other methodologies that are available in the literature. The proposed algorithm performs well with regard to robustness, reconstructs the parameter models effectively, and is easily implemented in the framework of the available parallel PDE software PETSc and the automatic differentiation software ADIC. The algorithm is also extendable to three-dimensional problems

    Multiphysics simulations: challenges and opportunities.

    Full text link

    Parallel unstructured solvers for linear partial differential equations

    Get PDF
    This thesis presents the development of a parallel algorithm to solve symmetric systems of linear equations and the computational implementation of a parallel partial differential equations solver for unstructured meshes. The proposed method, called distributive conjugate gradient - DCG, is based on a single-level domain decomposition method and the conjugate gradient method to obtain a highly scalable parallel algorithm. An overview on methods for the discretization of domains and partial differential equations is given. The partition and refinement of meshes is discussed and the formulation of the weighted residual method for two- and three-dimensions presented. Some of the methods to solve systems of linear equations are introduced, highlighting the conjugate gradient method and domain decomposition methods. A parallel unstructured PDE solver is proposed and its actual implementation presented. Emphasis is given to the data partition adopted and the scheme used for communication among adjacent subdomains is explained. A series of experiments in processor scalability is also reported. The derivation and parallelization of DCG are presented and the method validated throughout numerical experiments. The method capabilities and limitations were investigated by the solution of the Poisson equation with various source terms. The experimental results obtained using the parallel solver developed as part of this work show that the algorithm presented is accurate and highly scalable, achieving roughly linear parallel speed-up in many of the cases tested.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
    corecore