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ABSTRACT

HESSIAN MATRIX-FREE 
LAGRANGE-NEWTON-KRYLOV-SCHUR-SCHWARZ 

METHODS FOR ELLIPTIC INVERSE PROBLEMS

W idodo Samyono 

Old Dominion University, 2006 

Director: Dr. David E. Keyes

This study focuses on the solution of inverse problems for elliptic systems. The 

inverse problem is constructed as a PDE-constrained optimization, where the cost 

function is the L 2 norm of the difference between the measured data  and the pre­

dicted state  variable, and the constraint is an elliptic PDE. Particular examples of 

the system considered in this study are groundwater flow and radiation transport. 

The inverse problems are typically ill-posed due to  error in measurements of the 

data. Regularization methods are employed to  partially alleviate this problem. The 

PDE-constrained optimization is formulated as the minimization of a Lagrangian 

functional, formed from the regularized cost function and the discretized PDE, with 

respect to the parameters, the state variables, and the Lagrange multipliers. Our 

approach is known as an “all a t once m ethod.” An algorithm is proposed for an in­

verse problem th a t is capable of being extended to  large scales. To overcome storage 

limitations, we develop a parallel preconditioned Newton-Krylov m ethod employed 

in a Hessian-free manner. The preconditioners have an inner-outer structure, taking 

the form of a Schur complement (block factorization) a t the outer level and Schwarz 

projections a t the inner level. However, building an exact Schur complement is pro­

hibitively expensive. Thus, we use Schur complement approximations, including the 

identity, probing, the Laplacian, the J operator, and a BFGS operator. For exact 

d a ta  the exact Schur complements are superior to  the inexact approximations. How­

ever, for d a ta  with noise the inexact m ethods are competitive to  or even better than  

the exact in every computational aspect. We also find tha t nonsymmetric forms of 

the Karush-Kuhn-Tucker matrices and preconditioners are competitive to  or better 

than  the symmetric forms th a t are commonly used in the optimization community. In 

this study, iterative Tikhonov and Total Variation regularizations are proposed and 

compared to  the standard regularizations and each other. For exact da ta  with jum p
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discontinuities the standard and iterative Total Variation regulations are superior to 

the standard and iterative Tikhonov regularizations. However, in the case of noisy 

da ta  the proposed iterative Tikhonov regularizations are superior to  the standard 

and iterative Total Variation methods. We also show that in some cases the iterative 

regularizations are better than  the noniterative. To demonstrate the performance 

of the algorithm, including the effectiveness of the preconditioners and regulariza­

tions, synthetic one- and two-dimensional elliptic inverse problems are solved, and 

we also compare with other methodologies th a t are available in the literature. The 

proposed algorithm performs well with regard to  robustness, reconstructs the param ­

eter models effectively, and is easily implemented in the framework of the available 

parallel PD E software PETSc and the autom atic differentiation software ADIC. The 

algorithm is also extendable to  three-dimensional problems.
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1

CHAPTER 1 

INTRODUCTION

The twin developments of advanced algorithms and reusable, extensible, portable sci­

entific software make the solution of partial differential equations (PDEs) increasingly 

routine. This opens the door to PDE-constrained optimization. Many problems in 

science and engineering are ultim ately expressed as PDE-constrained optimization. 

This interdisciplinary thesis integrates recent developments in algorithms and soft­

ware, and focuses them  on a particularly im portant application: inverse problems for 

elliptic PDEs. These problems arise in groundwater flow, diffusive radiation trans­

port, nonlinear heat conduction and many other fields; see [6 , 80, 85] and references 

therein.

PDE-constrained optim ization typically appears in one of three particular forms: 

design optimization, optim al control, and param eter identification/data assimila­

tion/inverse problems; see [1 0 ] and references therein.

Software to  handle PDE-constrained optimization is less m ature than  what exists 

for the underlying PDEs. Software for PD E problems in spatial dimensions two or 

three, with billions of variables, can easily be found. One such package is PETSc (the 

Portable, Extensible Toolkit for Scientific Computation) from Argonne National Lab­

oratory [5]. PETSc’s nonlinear solvers include Newton-like methods. As we demon­

stra te  in this research, PDE-constrained optimization solvers can be extended alge­

braically from PD E solvers through Lagrangian formulations of equality-constrained 

optimizations. Algorithmically, we can use Newton-like methods to solve the nonlin­

ear optimality conditions, the so-called KKT systems. By exploiting commonalities 

between the solutions of PDEs and PDE-constrained optimization problems, we may 

build on PD E solvers to solve the PDE-constrained optimization problems. The basic 

mechanics of the nonlinear root finding remain the same. D ata structures and pre­

conditioners need to  be extended while optimization machinery needs to  be added. In 

addition, the associated linear algebraic problems have special, exploitable structure.

The focus of this research is to  solve inverse problems for a certain class of el­

liptic PDEs. The m athem atical problem is usually formulated as PDE-constrained 
optimization in which the cost function is minimized with respect to  the param eters

This dissertation follows the style of SIAM Journal on Scientific Computing
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2

and the state  variables, subject to  an elliptic PD E as the constraint. Representative 

instances of the problems th a t we study are found in groundwater flow and diffusive 

radiation transport.

We use Newton methods to  solve the first-order optimality conditions. The outer 

solver is a  Newton m ethod employed in a Hessian-free manner. The inner solver 

is a preconditioned Krylov solver. The preconditioners have an inner-outer struc­

ture, taking the form of a Schur complement (block factorization) a t the outer level, 

which divides the variables by type, and Schwarz a t the inner level, which divides the 

variables by domain, for parallelism. Unfortunately, the Schur complement is very 

expensive to  form and store, even if we are fortunate enough to have an autom atic 

differentiation toolkit for evaluation of its elements. In creating the Schur precon­

ditioner, probing and other techniques, including autom atic differentiation, th a t are 

inexpensive in the sense of being proportional in cost to the action of the Jacobian- 

vector product itself, are considered. Preconditioning is one of the issues th a t we 

study in this thesis.

The Schwarz and Schur components are based on domain decomposition methods, 

which are commonly used in solving PD E problems. The KKT residual vector can be 

decomposed by blocking according to  the param eter vector, the state  variable vector, 

and the Lagrange multiplier vector. To carry out the Newton iteration due to  the 

potentially extreme large storage in using this methods we compute the Hessian- 

vector product by a matrix-free method. This leads to a parallel solver for the 

PDE-constrained problem. The efficiency and the scalability of the algorithm are 

discussed.

Unlike forward problems in the solution of PDEs, inverse problems are frequently 

ill-posed. According to  Hadam ard [43], a problem is “ill-posed” , if a solution is 

not unique, or the unique solution is unstable, or there exists no solution for the 

problem. To overcome ill-posedness we can use a regularization. In this study we 

combine iterative regularization with Tikhonov and Total Variation regularization. 

We simply add the regularizing term  to  the cost function. The effectiveness of the 

regularizations is also discussed.

1.1 FORWARD PROBLEMS IN ELLIPTIC PARTIAL DIFFEREN­
TIAL EQUATIONS

The forward problem in elliptic PDEs can be formulated as follows:
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Find u(x)  th a t satisfies partial differential equation

h(u ,p , s ,b , i ; x )  = 0 , (1 )

where u  is the state variable, p is the param eter, s is the source, b is the boundary 

condition, and i is the initial condition.

The solutions for the forward problem can be formally written as

u = H ( p , s ,b , i ; x ) ,  (2)

where p, s, b, and i are provided.

The general form of elliptic PD E we consider can be formulated as follows (See 

Banks et al. [6 , 47]):

V • ( -a V u )  +  b ■ V « +  cu = f  in O, (3)

with the Dirichlet boundary data

« =  g o n  <90. (4)

where

/  e tf°(0).

Define A  =  V  • (—aVu) +  b ■ V u  +  cu, with bounded and measurable coefficients 

a (symmetric real-valued n  x n  m atrix) and complex-valued b and c in L°°(0). A  is 

an elliptic operator if there is e >  0  such th a t a(x)£ • £ >  e | £ | 2 for any vector £ €  5?" 

and any x  G Q.

We also consider nonlinear case in which a depends on the solution u.

A particular m athematical model of an elliptic PD E th a t models two-dimensional 

steady flow in a confined aquifer takes the form:

V -(T (x ,i/)V 0 (x ,y ))  =  5(®,j/), (5)

subject to  boundary conditions

<Kz,y) =  h { x , y )  on Ti C dQ, (6 )

T(x ,  y)V<j>{x, y) • n =  f 2(x, y) on V2 C <90, (7)
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where </>(x, y) is the piezometric head, T(x ,  y ) is the transmissivity, and S(x,  y) is the 

sink/source (See Sun [80, p. 2 2 ]).

This study is motivated by successes in solving such PDEs with Newton-Krylov- 

Schur, Newton-Krylov-Schwarz, and Newton-Krylov-Schur-Schwarz methods. These 

m ethods are based on domain decomposition. Hence, they are suitable for solving 

large-scale PDEs on distributed-memory parallel machines. For more detail about 

domain decomposition m ethods for PDEs, see the books by Smith, Bjorstad, and 

Gropp [78], Quateroni and Valli [72], and W idlund and Toselli [87], as well as the 

15 proceedings volumes of the International Conferences on Domain Decomposition 

[36, 20, 21, 37, 53, 71, 54, 38, 15, 63, 61, 22, 30, 45, 59].

1.2 INTRODUCTION TO ELLIPTIC INVERSE PROBLEMS

1.2.1 Formulation of Inverse Problems

The inverse problems can be formulated as O utput Least Squares as follows:

Find p  € Pad, such th a t

rnin E(p) — nun ||u(p) — d||, (8 )

where Pad is an admissible set of the unknown parameters, d is the data, and u(p) 

satisfies

h(u, p, s, b, i; x, t) — 0, x  6  Cl. (9)

Equation (9) is a partial differential equation (PDE).

If the inverse problems are ill-posed, we need to  add a regularization term , 7 R(p ) , 

where R(p)  is a regularization functional and 7  is a nonnegative regularization pa­

rameter, to  the cost function.

If Equation (9) is h(u ,p , s ,b ;x )  =  0, th a t is an elliptic PD E (independent of t), 

the inverse problem is called an inverse problem for an elliptic system or an elliptic 

inverse problem. If 6 (x) =  0, and we know u  only on the boundary, it is called inverse 

conductivity. In the groundwater modeling case, besides u  on the boundary being 

known, where 6 (x) =  0, u  in the interior is also known. For examples of the elliptic 

inverse problems we refer to  [6 , 48, 49, 80, 47].

For other type of PDEs subject to  output least squares, we mention hyperbolic 

PDEs as described in [3, 24, 47] and parabolic PDEs as described in [6 , 47, 80, 40].
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1.2.2 Types of Solution Methods: All At Once and Multidisciplinary 
Feasible Methods

Three types of methods for PDE-constrained optimization may be distinguished by 

the treatm ent of the state  variables and the parameters. The first class of m ethods 

are often designated as “all a t once” (AAO). In this m ethod the state variables and the 

param eters are independent of each other. This class is also known as “simultaneous 

analysis and design” (SAND) or “one-shot” methods. The second class of m ethods 

are called “multidisciplinary feasible” (MDF). In this m ethod the state  variables are 

considered to  be functions of the parameters. Thus, this is type of a  reduced basis or 

generalized reduced gradient method. A th ird  class of methods is proposed by Lewis 

and Schnabel [32]. They designate it as an “in-between” method. This m ethod is a 

hybrid of the two previous methods.

1.2.3 Types of Solution Methods in Groundwater Modeling

In the groundwater modeling (see [80, pp. 30-34]) three methods are commonly used 

to  solve the inverse problems: trial and error (black box) method, indirect method, 

and direct method.

The tria l and error m ethod is the simplest method. It only needs a forward 

(PDE) solver, observation data  on state  variables, and an expert hydro-geologist. 

Iteratively, starting with an initial guess, forward problem is solved, then the hydro­

geologist compares the result with observation data. If the result is satisfactory, then 

the iterative process is stopped. If not, the hydro-geologist studies the output, then 

modifies the param eter to  get better fit between the observation data  and the model 

output. The m ethod is repeated until the satisfactory result is achieved. W ith this 

m ethod, there is no need to write a new program. Furthermore, it can be used to 

solve any kind of inverse problem. This is a primitive m ethod th a t is still extensively 

used in practice. However, this m ethod has some drawbacks. It is slowly convergent 

and tim e consuming. Furthermore, different results may be obtained by different 

users.

The indirect m ethod is the output least squares method. Compared to  the trial 

and error method, we need only to  replace the procedure for modifying the param eter 

to  get better matched solutions by a nonlinear programming procedure. In this 

procedure the PD E solver is called many times. Thus, this way indirectly we solve
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the inverse problem through the PD E solver. This m ethod can reduce hum an effort, 

and begin to solve the problem quickly. However, use of the direct (forward) solver 

inside the iterative process leads to  long computational times if the data  of the PDE 

is large.

The direct m ethod can be explained as follows:

First, discretize the PDE, then  rearrange the discrete equations such th a t we 

obtain overdetermined equations

H p  — r  =  0, (10)

where H  is an L  x M  m atrix, r a n i  row-vector, L  the number of observations, and 

M  the number of unknown param eters, where L > M.
Second, let the residual of Ith equation be

Mj(P) =  H hPi +  H hP2 +  • • ■ +  H lmpm - r h {1= 1 , 2 , . . . ,  L). (11)

Third, find p  th a t is the solution of the optimization problem

m inD (p ) =  X ) [^ ( p )]2! P e  Pad, (12)
t=l

where

Pad = {Pm, Pm < P m <  Pm}, (13)

where pm is the lower bound, and pm is the upper bound of the param eter pm.

This m ethod does not require a PD E solver. However, in order to  use this method 

the interpolation process is needed in order to  get all nodal values of the distributed 

state  variables. This can result extra interpolation error (noise). Thus, this m ethod 

is very sensitive to  any noise associated with the observation data.

These m ethods originally are proposed by Neuman in 1973 [6 8 ]. Our approach is 

the hybrid of the last two methods, enhanced with some new sophisticated techniques 

th a t are suitable for solving large-scale problems.

1 .2 .4  A n a ly tic a l a n d  N u m e ric a l S o lu tio n s

In general there are two ways of solving inverse problems: analytical approaches 

and numerical approaches. The advantages of the analytical approaches are th a t we 

can have accurate closed form solutions. However, we usually can solve only very 

simple problems and well-posed problems. In contrast, the numerical approach can
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potentially solve extremely large problems and ill-posed problems. Although the 

solutions are only approximate, they can be used to  inform many realistic situations.

Analytical approaches to inverse problems for elliptic PDEs can be found in [58] 

for groundwater modeling, and in [29, 4] for inverse conductivity.

1.3 SOLUTION METHODS AND RELATED WORK

Our study focuses on solving elliptic inverse problems by means of numerical methods 

based on output least squares formulations. We describe some numerical methods to 

solve inverse problems in elliptic systems using the output least squares formulations 

and their variants.

First, if we assume the forward problem is well-posed, then we can obtain an 

unconstrained regularized output least square minimization problem,

rnin | |jF ( p ) -  d || +  aR(p) = mm \\CA{p)~1f  -  d || +  aR(p),  (1 4 )

where A{p)u = f  is the forward PD E problem, and C  is called the state-to- 

observation map.

This approach can be found in Vogel [8 6 , 85]. For large-scale problem, this 

approach may be costly, since, in order to  solve the minimization problem, we need 

to  solve the forward PD E problems for different param eters p  in the iterative process. 

Also this m ethod can fail to  converge for finer grids. This m ethod is known as the 

“following feasible pa th” approach or M ultidisciplinary Feasible M ethod (MFD). For 

comparison of this m ethod with the “All a t Once” method, see Haber and Ascher 

[42].
Second, for iterative regularization methods of param eter identification and their 

variants, we mention Burger and M uhlhuber [16,17] and the references therein. Here, 

the problem is

m m h \ E u - z \ \ 2 (15)
(u,p) I

subject to

e(u,p) = f ,  (16)

where e(u,p) — f  is the partial differential equation (PDE).

The first m ethod is proposed as follows:

Method 1 (Iteratively regularized sequential quadratic programming 
(IRSQP) method).
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Let (iio,PO)Ao) be a given initial value and let where N  is the set of
natural numbers, be a bounded sequence of positive real numbers. The IRSQP 

m ethod consists of the iteration procedure

(̂ fc-l-lj Pk+l > ^fc+l) (P'ky Vki Afc), (1- )̂

where (uk,pk) is the minimizer of the quadratic programming problem

min h \ E u  -  z s \\2 +  ^- \\p -  pk \\2 +  (^Afc, e"(uk,pk){u -  u k,p  -  pk)2) (18)
{u,p) Z  Z  Z

subject to  the linear constraint

e{uk,pk) + e'(uk,pk)(u -  u k,p -  pk) = / ,  (19)

where Xk is the corresponding Lagrange multiplier, z s is the data  with noise level 5, 

and prime denotes the differentiation with respect to  each argument.

The implementation of this m ethod can be costly and difficult due to  the second 

derivative in the functional.

A second m ethod is proposed as follows:

Method 2 (Levenberg-Marquardt sequential quadratic programming 
(LMSQP) method).

Let (uq,pq) be a given initial value and let (Pk)keM be a bounded sequence of 

positive real numbers. The LMSQP m ethod consists of the iteration procedure

(uk+1,pk+1) =  (uk,pk), (20)

where (u k,pk) is the minimizer of the quadratic programming problem

m i n ^ l l ^ u - Z f  +  y l l p - p f e U 2 (2 1 )

subject to  the linear constraint

e(uk,pk) + e'(uk,pk)(u -  u k,p -  pk) =  / .  (22)

Theoretically this m ethod is effective for certain conditions. As discussed in [17], 

the numerical examples show th a t the m ethod outperforms the ordinary Levenberg- 

M arquardt m ethod and Broyden’s method. As a Newton method, the Hessian ma­
trices may be ill-conditioned, hence it needs more investigation with respect to  pre­

conditioners. As an “all a t once m ethod” the usage of the storage for large-scale 

problems should also be considered.
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Third, for Augmented Lagrangian m ethods and their variants, we may check 

[48, 49], and the references therein.

The inverse problem is stated  as follows:

on Cl, in the two dependent variables p  and u.

The algorithm to solve the inverse problem is as follows:

Step 1. Choose A1 =  p 1 =  0, { c * ,} ^  monotonically increasing ck >  cq.

Step 2. P u t k  — 1, u0 = z.
Step 3. Determine pk from

Step 5. Afc+1 =  A* +  cke(pk, u k) and p k+1 =  p k + ckg(pk, p k, ck).

Step 6 . If convergence is achieved, stop; otherwise put k  =  k  +  1 and go to  Step

This m ethod performs very well for many of the numerical test cases. Globally 

this algorithm has a good convergence behavior but converges locally a t rather slow 

rate. Furthermore, the decouple optimizations may cause a problem, if we realize 

the m ethods in the larger scale problems.

Fourth, we consider Reduced SQP Methods from [60] as follows:
For given observation da ta  z  € H q (Cl) find p  such that

mm
u,p

(23)

subject to

- V  • (pVu) =  / ,  

b ln  <  7,

(24)

(25)

(26)a  < p

mm
p
n j^ iV (p ) +  (A fc,e (p ,u fc_1)) +  ^  |e (p ,u fc_ i ) | 2 +  p kg(p, p k,ck) 

+y</(P,/Acfc)2}
(27)

over p  €  H 2 subject to  p > a.

Step 4. Determine u k from

• J 1 !mm <-\u  — z  
« 1 2{

2 +  i ^ k,e(pk,u)) + y | e(p, Uft-i)|2} . (28)

3.

—V • (pVu) =  g in D (29)
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and

u  =  0  on dVL. (30)

The inverse problems are formulated by the least squares formulation as follows:

min ^ ||it  -  z \ \ 2h i  +  ^HpIIhi,  (31)

such th a t

e(u,p) = (A )-1 (V • (pVu) + g )  = 0, (32)

where A is the Laplace operator with Dirichlet boundary conditions.

The problem is solved by using a Lagrangian m ethod with the Lagrangian func­

tional

L{u,p,  A) = \ h ~  z \ \ \ ,  +  ^ | b | | |  +  { \ , e (p ,u ) )Hi, (33)

where H  C L°°.

W ith changes in the notation, this reduced SQP algorithm for the inverse prob­

lems can be described as follows:

For every h  €  H  is defined the operator

A(h)  : H i  -> H - 1 (34)

by
A(h)u  =  —V • (hVu).  (35)

The Frechet derivative of e is given by

e'(p, u)(h, v ) =  A ~ 1(A(h)u  +  A(p)v).  (36)

The Frechet derivative of the Lagrangian is

L x ( q ,u , \ ) (h , v )  =  (u - z , v ) Hi + f3{p, h ) ^  +  (A, A ~ l (A(h)u + A(p)v))Hi. (37)

ALGORITHM
( 1 ) Choose po > v, P > 0. Set Ao — 0, uo = z, and

B 0 = p i  + J [Vu0 • (VA(po)"1AA(po)“ 1V)((0Vuo)]. (38)

(2) Evaluate right-hand side and solve for uik G H:

B ku k =  - P p k -  J [V u fc • V A lpk ) -1 A ( u k -  z))]. (39)
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(3) Set

(pk+, u k+) = (pk, Uk) +  (wfc, —A(pk) 1A(u>k)uk)

(Pk+i,Uk+i) = (pk+,Uk+) + ( 0 , - A ( p k) - 1Ae(pk,u k)).

(40)

(41)

(4) Set

h  =  -A (p fc+1)- 1A (u fc+1 -  z). (42)

(5) Set

Vk = P(Pk+ ~  Pk) +  ■ /[-V Xk ■ V ttfc+ +  V u k ■ V  A(pk)~1 A ( u k+ -  uk)
(43)

V u k • V A ( p k) (pk+V X k)}

(44)

else

(45)

(7) Set k = k  +  1 and return  to (2 )

The m ethod looks better than  the augmented Lagrangian m ethod with respect 

to  local convergence. However, for certain cases it does not converge. Thus, it needs 

a globalization strategy th a t goes beyond the previous method.

For m ethods used in inverse problems other than  param etric identification, we 

refer to  the book by Vogel [8 6 ], and Isakov [47]. We do not discuss them  here, because 

the m ethods cannot be used for elliptic inverse problems.

1.4 THE PROPOSED ELLIPTIC INVERSE PROBLEM ALGORITHM

Although the methods we mentioned above are effective, they are usually not readily 

applicable for large-scale problems and for parallel computations. Another feature 

th a t is different from our proposed m ethod is the order in solving the inverse prob­

lem. W hereas the m ethods above use the “optimize then discretize” approach, our 

approach is based on the “discretize then optimize” . We use this approach because 

it is easily implemented in an available PDE solver.
Our proposed methods have the following characteristics:

•  simple and easily implemented in an available PDE solver,
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•  computational cost comparable to  solving the forward problems,

•  applicable for large-scale problems,

•  applicable for parallel machines.

This work is actually the extension of our previous work [55]. We owe considerable 

debts to  Biros and Akcelik. From Biros [12, 13, 14, 11] we borrow the ideas of using 

full space solvers and Schur preconditioners. His solver uses Newton Full Sequential 

Quadratic Programming (SQP), while ours is Newton Full Hessian matrix-free; see 

Chapter 2 for the details. His Schur preconditioner approximation uses Quasi-Newton 

SQP, while our preconditioner has an outer-inner structure in which the outer part is a 

Schur complement, which is approximated by probing techniques and other operators, 

and the inside are Schwarz methods. Our problem domains are also different. Biros 

applies his algorithm to control optimization, while ours is applied to  an inverse 

problem th a t is even more challenging due to  ill-posedness of the problem. From 

Akcelik [2] we borrow some regularization strategies. He uses Tikhonov and Total 

Variation regularizations, while we combine iterative regularizations with Tikhonov 

and Total Variation regularizations. Our problem domains are also different. Akcelik 

applies his algorithm to inverse problems in wave propagations which are hyperbolic, 

while ours is an elliptic inverse problem. In their preconditioners and solvers they 

prefer to  preserve symmetry in the KKT matrices. On the other hand, we prefer to 

use nonsymmetric perm utations of the KKT matrices in our first numerical test case 

(a linear elliptic PDE). Therefore, they use conjugate gradient (CG) m ethods with 

the LU  decomposition or symmetric block preconditioners. Meanwhile, we use upper 

triangular block (by using the U part of the LU  decomposition), nonsymmetric block 

(by dropping the blocks (1,3) and (2,3)), and symmetric block preconditioners (by 

dropping further the block (1 ,2)); see Equations (101), (102), and (103), respectively. 

We also propose a new preconditioner th a t we call a nonlinear preconditioner.

As with Biros and G hattas [1 2 , 13, 14, 11], Haber and Ascher [42] report on their 

preconditioners and KKT systems on param eter estimation problems. Although they 

discussed nonsymmetric KKT systems, they do not use it. They prefer to  use sym­

metric KKT formulations. Hence, they use preconditioned conjugate gradient (PCG) 

and preconditioned symmetric quasi minimum residual (PSQMR). Furthermore, they 

also use approximations for the reduced Hessians or the Schur complements th a t are 

different from ours. They use Gauss-Newton approximations. Although we also use
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this approach for our second numerical test case (a nonlinear elliptic PDE), we use it 

only in the preconditioner. Our second numerical example shows th a t for this class 

of problems it may be better to  use a nonlinear preconditioner; see 3.6.

Our iterative regularizations are inspired by the Landweber iterative regulariza­

tion and its variants; see Burger and M uhlhuber [16, 17] and the references therein. 

However, they use the version of Tikhonov regularization functional w ithout deriva­

tive. Hence, the second derivative block of the KKT systems with respect to the 

param eter will be an identity m atrix multiply by the regularization param eter. This 

looks like a Levenberg-Marquadt method. Therefore, they call their m ethod as 

Levenberg-Marquardt sequential quadratic programming (LMSQP). Our methods 

use a Tikhonov functional with derivative and a Total Variation functional. In so, 

we expect to  have the advantages of bo th  iterative and functional regularizations 

in our algorithm. One of the advantages of the functional regularizations is th a t 

they converge quickly. Meanwhile, the iterative regularizations are very stable. Our 

numerical test cases show th a t we can get these two advantages by keeping the regu­

larization param eters large enough or not rapidly decreasing. Burger and Muhlhuber 

also use symmetric KKT systems.

Our formulation of numerical Example 1 (linear elliptic PDE) uses k ( x )  = (3(x) 

for the diffusivity param eter, as in Burger and M uhlhuber [16, 17]. Meanwhile, 

Haber and Ascher [42], also Vogel [85], use the diffusivity param eter of the form 

k ( x )  = e ^ x \  These different formulations can create different KKT systems. The 

KKT matrices of the former are sparser than  those of the later. In the former, the 

first-order derivatives of the Lagrangian functionals with respect to  the param eters 

may also result in singular or closely singular Jacobian matrices. Hence, the singular 

Jacobian matrices may rule out of using Gauss-Newton methods. To regularize, we 

keep the regularization term  in the preconditioners, as in Haber and Ascher [42]. 

Preserving symmetry in the KKT matrices can also can lead to  highly indefinite 

matrices, which is complementary disadvantage. We discuss this issue more details 

in 3.8.

1.4.1 Formulation of the Inverse Problem

Consider the domain Cl, where the state variables u are known (as collected data) 

inside the domain Cl and on the boundary dCl. We assume th a t in the domain there 

are known sources/sinks S.  The inverse problem seeks to  discover the properties of
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the medium from the known data. If we assume th a t the m athem atical model of the 

discretized partial differential equation is h(p, u, x) =  0 , where u  is the state  variable, 

p is the param eter, and x  6  fl, we need to  find p  from the known data.

Assume th a t the medium is inhomogeneous. Because analytical solutions usually 

exist only for highly structured problems, assume the problem may not be solved

analytically. Furthermore, the discretized forward problem is very large. Hence,

the use of the classical output least squares m ethod must be avoided. We pursue a 

parallel numerical algorithm th a t is efficient and scalable.

The m athem atical formulation of the inverse problem in discrete form is as follows:

^ \ \ \ C u ~ u d\\2, (46)

subject to

h(u,p)  = 0, (47)

where C  is the state-to-observation map, u  is the computed state  variable, u d is the 

state data, p  is the param eter th a t we would recover, and h(p, u) = 0  represents the 

discretized elliptic PDE.

We assume th a t the observed data  can be expressed as

ud — C u  + S, (48)

where S is the noise in the data.

1 .4 .2  Ill-p o sed n ess  a n d  R e g u la riz a tio n

A problem th a t we most likely encounter is ill-posedness. This is due, a t least, 

to  errors in the collected data. Thus, the solution to  the inverse problem may be 

impossible to  approximate, as given. We accommodate this problem by using regular­

ization. This approach shifts the ill-posed problem to a nearby well-posed problem. 

Specifically, we add the regularization term  to  the cost function.

In this study we first describe Tikhonov regularization. This regularization is sim­

pler and less expensive to  implement than  the Total Variation regularization. There 

are some variants of this regularization. However, this regularization can not handle 

a sharp discontinuity on the estim ated param eter very well. We observe the Total 

Variation regularization th a t can overcome such a problem. However, this regular­

ization is more expensive than  Tikhonov regularization in the sense of iteration count
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or computation time. We can see this from the work of Akcelik et al. [2, 3]. Another 

regularization th a t we consider is an iterative regularization. This regularization is 

different than  the two previous regularizations in th a t it evolves the regularization 

param eter during the iterative process, whereas the two previous regularizations are 

fixed. We study the combination of these two type of regularization, iterative regu­

larization and Tikhonov regularization, or Total Variation regularizations, in search 

of a faster and more effective algorithm. We will discuss these topics more detail in 

chapter 4.

1.4.3 Lagrange-Newton Method and Globalization Strategy

If we include the regularization in the formulation, the inverse problem can be defined 

as follows:

min [c(u, p ) +  ■jR(p)}, (49)

subject to

h(u,p)  = 0, (50)

where c(u,p) = | \ \Cu  — Ud\\2, 7  is the regularization param eter, and R(p)  is the 

regularization functional.

Algebraically, by introducing Lagrangian multipliers A, we can reformulate the 

constrained optimization as an unconstrained optimization as follows:

min C(u, p, A) =  min [c(u, p) +  7 -R(p) +  Ah(u, p )}, (51)

where u  is the state  variables, p  is the parameters, and A is the Lagrangian multipliers.

To solve this problem, we formulate the first- and second-order optimality condi­

tions [69].

As shown in Chapter 2 and in [55] (without the regularization term ), the first- 

order optim ality conditions are:

rji dh n
+  A —  =  0, (52)

d R  . T dh
+ ^  +  a 5 - ° -  (53)

0. (54)

These are known as the Karush-Kuhn-Tucker (KKT) first-order optimality condi­

tions. This is a nonlinear system. One of the m ethods to solve this nonlinear system

dC dc
du du
dC dc
dp dp
dC
dX

=  h =
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is Newton’s method. It is known th a t this m ethod can converge quadratically and be 

scalable. In this study we base our m ethod on the “all a t once m ethod” , where the 

system is solved simultaneously for all unknowns. One of the prominent disadvan­

tages is the requirement of large storage. In order to  avoid this problem, we solve the 

system in Hessian matrix-free manner. We explain this in more detail in Chapter 2.

If we use Newton’s m ethod to solve the first order optimality conditions above, 

we repeatedly encounter the following linear system of equations:

(cuu -b X huu) (.̂ up ~b A hUp)
-b A hpU) (Cpp “b htpp ~b A hpp)

K ( 8 u ^ 1 cu +  A Thu '
Sp = - cp +  •yRp +  XThp

[ s x \  h )

or

H  H T JT1Juu up °u  ̂ du ^
f  )

Hpu Hpp iRpp Jp 6p - — gp +  7  R P

Ju Jp 0 K X+ ) \  h /

(55)

where Hab = £ § i + AT£ | ,  J a =  £ ,Rb =  £  ,Rbb = , and ga = £ ,fo r  a, b G {u ,p } ,
and where A+ =  A +  5X. 

or

M k 5x  =  g, (56)

where M k  is the KKT m atrix (Hessian m atrix), 5x is the Newton step, and g is the 

gradient vector.

Hence, iteratively we will compute Xk+i =  Xk+akSx, for k =  0 , 1 , . . . ,  kmax, where 

ctk is a robustification param eter such as is set by a line search method. We stop 

the iteration process when the gradient reaches a certain maximum tolerance or the 

iteration reaches a maximum value with a failure.

The Newton m ethod is locally convergent bu t requires a globalization strategy. 

Two popular globalization strategies are line search methods and trust region m eth­

ods, with many variants. We use a basic line search th a t works very well for the 2-D 

numerical test cases. However, we did not require globalization strategies in our 1-D 

examples, even without continuation m ethods as in [85], where the previous com­
putations are used as the initial guesses for the next computations with decreasing 

sequential regularization param eters 7  =  1 , 0 .1 , 0 .0 1 , . . . .
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1.4.4 Ill-conditioned Problems and Preconditioning

The KKT m atrix in (55) is frequently indefinite and ill-conditioned. This can cause 

the iteration process to  be very slow or even divergent. Hence, we need a  good 

preconditioner. The preconditioners th a t we use are based on domain decompo­

sition preconditioners, commonly used in solving PDEs. In this study we discuss 

Schwarz preconditioners, Schur preconditioners, and their combinations. We propose 

a Schur-Schwarz combination preconditioner. In outer level we use Schur precondi­

tioner based on decomposition of the state variables, the design variables, and the 

Lagrangian multiplier. Meanwhile, in the inner level we use Schwarz m ethod based 

on the domain decomposition method. For more details about Schur and Schwarz 

preconditioners, we refer to  [78, 87]. We will discuss our proposed preconditioners in 

more details in Chapter 3.

1.5 TEST CASES

We use 1-D and 2-D synthetic numerical models as test cases. These test cases are 

found in im portant applications, such as in groundwater flow and radiation transport.

1.6 OUTLINE OF THE DISSERTATION

The dissertation is organized as follows:

•  We discuss in Chapter 2 methods of solving PDE-constrained optimization 

problems of Lagrange-Newton-Krylov-Schur-Schwarz (LNKSS) type, first by 

components of the algorithm, and then integrated.

•  Linear and nonlinear preconditioning strategies are discussed in Chapter 3. We 

describe experiments th a t show the effectiveness of the preconditioners, such 

as the condition numbers and the spectra of the matrices. We also discuss 

the nonlinear preconditioners and the comparison with the linear ones for the 

nonlinear elliptic inverse problem (Numerical Example 2). We also discuss the 

preferences in selecting the nonsymmetric KKT matrices.

•  The regularization strategies are the focus of Chapter 4. We observe some reg­

ularization strategies, and propose iterative Tikhonov and Total Variation reg­

ularization. We also discuss the proposed iterative regularization and compare
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to  the regular regularization. We also discuss a possible new stopping criteria 

for using the proposed iterative regularization in the proposed algorithm.

•  In Chapter 5 we discuss how to implement the algorithm in the parallel library 

PETSc (a software package for solving algebraic systems th a t commonly arise 

in PD E problems) and ADIC (an autom atic differential tool for generating 

derivative code). We discuss how PETSc and ADIC can be used together, and 

w hat the benefits are. We also observe how the d a ta  structure between the 

PD E and the optimization can be matched.

•  In Chapter 6  the numerical experiments of the LNKSS are presented. We 

discuss the robustness of the algorithm, and the effects of the regularizations 

in recovering the parameters.

•  In Chapter 7 we summarize our research and note some future directions.
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CHAPTER 2 

LAGRANGE-NEWTON-KRYLOV-SCHUR-SCHWARZ

In this section, we describe the differences and the similarities in solving PD E 

and PDE-constrained optim ization problems. As in [12, 13, 14, 11] and [55], let 

h (p ,u ) =  0 be the discretized systems of (generally nonlinear) PDEs, and c(p ,u ) 

be the objective function. Then, by the Lagrangian m ethod we seek the stationary 

point of the regularized Lagrangian functional

C(p, u, A) =  c(p, u) +  7 R(p) + \ Th{p, u ), (57)

where p  is the design variable, u  is the state  variable, 7  is the regularization parame­

ter, R{p) is the regularization functional, and A is the vector of Lagrange multipliers.

As described in [55] (with the addition of a regularization term ), the first-order 

optim ality conditions are

_  dc T dh _
* ;  =  ^ + A ^ - 0’ (58)
dC dc T dh d R  . .

^  = ^  + AV 7¥  = 0’ (59)
dc
d \

We seek a  correction

h = 0 . (60)

1 S u ^

5p
\ 5 X )

to  the iterate

p ■U
W ith subscript notation for the partial derivatives, we can write the Newton 

correction (KKT) equations as

(̂ 14U ""t"" ^ hUU) (̂ Up ^ ^Up) hy. f 5p ^  ̂ cu +  A Thu ^

(^pti ^ hpu) (^pp ^ hpp̂ j hp 5u =  - cp +  7  Rp +  \ Thp

hu hp 0 { 6 X ) \  h )
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or

gp + iR p  

h )

(61)

where H ab

and where A+ =  A +  5A.
In the Newton framework, it immediately can be seen th a t solving h(p ,u ) =  0 

with respect to  u  in the PD E problem requires operations th a t are a subset of those 

involve in the KKT equations. Fortunately, by exploiting the similarities in the two 

problems, we may solve the PDE-constrained optimization problems efficiently.

As mentioned in [55, 1 2 , 13, 14, 11], we may solve the KKT equations by Newton 

Reduced SQP or Full-space Lagrange-NKS method. The full-space m ethod may be 

preferred due to  the opportunity to  reuse the available PD E solver. However, good 

preconditioners are needed. To form the preconditioners, not to  mention the m atrix 

for the solver, is expensive, even if we can build all the KKT m atrix components by an 

autom atic differentiation toolkit. Hence, we propose Hessian Matrix-free Lagrange- 

Newton-Krylov-Schur-Schwarz methods.

First, we discuss the components of the m ethods in the following sections and 

subsections.

2.1 NEWTON METHODS

Let h (x ) =  0 be a function representing the residuals of a discretized PDE. To solve 

this problem using a Newton method, we need the Jacobian (first partial derivatives) 

of the function, J (x ) . Iteratively with an initial guess x^°\ the solutions is obtained 

by correcting to  the current xS^-.

2.1.1 Inexact Newton

The class of inexact Newton methods is an alternative of the Newton m ethods if the 

number of unknowns in the nonlinear equation, h(x) — 0 , is large as discussed in

x.(fc+i) =  x (k) +  6Xj (62)

where 6x is the step. For a good initial guess the m ethod converges rapidly 

[50, 51].
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[31]. The m ethod can be described as follows: For initial guess x ^ ,  the solution is 

obtained by correcting the current x ^ :

x (k+1) =  x (k) + Xk§x>

where Sx is the step and A* is the line search param eters for iteration k.

The iteration is stopped when

|| J (x k)5x  +  h (xk)|| <  rikh (xk), (64)

where rjk is the forcing term , is satisfied.

For robustness and efficiency, it is necessary to  choose Xk and gk properly. This 

is discussed in many practical venues [50, 51, 31].

2.1.2 Newton Reduced SQP

As in [55, 12, 13, 14, 11], solving the KKT system involves the following three steps: 

• Design Step (Schur complement for middle block-row):

H6p = f ,  (65)

where H  and /  are the reduced Hessian and gradient, respectively:

H  = H PP-  J p ~ TH up +  ( J j  J~TH UU -  Hpu) J - 1 Jp +  7 -Rpp, and 

/  = - g p + Jp J~Tgu -  ( j p u TH uu -  Hpu) J p  + 7 R ,.
(66)

• State Step (last block-row):

JuSu = — h — JpSp (67)

• Adjoint Step (first block-row):

Ju A_|_ gu Huu5u Hup6p (b8 )

In the literature, e.g., [69], this m ethod is called Reduced Sequential Quadratic 

Programming (RSQP). By approximating the exact reduced Hessians H  with a ap­

proximate reduced Hessian Q (e.g., Broyden-Fletcher-Goldfarb-Shanno (BFGS) or 

Davidon-Fletcher-Powell (DFP))[69, p. 197], this three-step m ethod is called quasi- 

Newton Reduced SQP. It is applied in the following steps:

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2 2

•  D esig n  S te p  (severe approximation to middle block-row):

QSp = - g p +  J j  J~ Tgu, (69)

where Q is a quasi-Newton approximation to  the reduced Hessian.

•  S ta te  S te p  (last block-row):

JySU   /1 JySU (70)

•  A d jo in t S te p  (approximate first block-row):

u 9 u (71)

We can use this sequence of operations as a preconditioner, with or without a 

regularization term , as in Chapter 3 and [12, 13, 14, 11],

2.2 KRYLOV METHODS

For any linear equation A x  — b, we can develop the iteration x fc+1 — x k + (b — A x k), 

for k  =  0 , 1 , 2 , . . . ,  to  approximate the solution with the initial solution xo- If we 

assume the initial solution as the multiple of the right hand side b, then the first 

approximate solution is

A second approximate solution can be found from the combination of b and Ab as 

follows:

The space on the right of the above equation is known as a Krylov subspace for the 

m atrix A  and initial vector b.

The methods based on these spaces are called as Krylov methods. Examples 

are MINimal RESidual (MINRES), Conjugate Gradient (CG), Generalized MINi- 

mal RESdiual (GMRES) [74], Quasi-minimal residual (QMR) [35], etc. For some 

applications and explanations of these methods, see in [7, 41, 73]. For an historical 
overview of these Krylov methods, we may refer to Saad and van der Vorst [75]. 

For preconditioners and Krylov solvers, see the recent review by Benzi, Golub, and 

Liesen [9].

Xi e  span{6 }.

X2 € span{£>, Ab}.

Inductively, the A;th approximate solution satisfies

Xfc € span{6 , Ab , . . . ,  Afe-16}, k — 1 , 2 , . . .
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2.2.1 Preconditioned Krylov Methods

We may left precondition the systems A x  =  b by P, to  obtain P A x  =  Pb, in which 

the spectral properties of their coefficient m atrix  P A  is supposed to  be more favorable 

than  those of A, making an iterative m ethod more efficient. If preconditioning can 

be done in a matrix-free manner, then we only need a  subroutine th a t performs a 

preconditioner-vector product.

In this case, the preconditioned Krylov m ethods will approximate the kth. solution 

in the span of a modified Kryiov space

x k €  span {Pb, (P A )P b , (P A f P b , . . . ,  ( P A f ^ P b ) } ,  fc =  1 , 2 , . . .

Borrowing from Benzi, Golub, and Liesen paper [9], the relationship of the Krylov 

methods, the types of A  matrices, and the types of the P  m atrix preconditioners can 

be summarized as in the Table 1.

Table 1
Summary o f Krylov subspace methods discussed in 2.2.1.

Method Required A Type Recurrence Required P
CG symm. def. optimal three-term symm. def.
MINRES,
SYMMLQ

symm. optimal three-term symm. def.

SQMR symm. non-optimal three-term symm.
GMRES general optimal full general
QMR,
BiCGStab,
TFQM R

general non-optimal three-term general

2.2.2 Some Error Bounds for Krylov Methods

The spesification of Krylov methods is completed with various criteria for term ina­

tion. Since we will use and compare the GMRES and the QMR methods we will 

discuss the error bounds for these methods.

First we will discuss the error bound for GMRES method. As in Greenbaum [41, 

p. 54] and Saad [73, p. 194, P roposition 6.15] the error bound for the GMRES is 

as follows:
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Assume th a t A is a diagonalizable m atrix and let A  = V A V  \  where A =  

diag{Xi, A2, . . . ,  A„} is the diagonal m atrix  of eigenvalues. Then,

I N I  =  min ||Pfe(A)r0|| =  min !|V̂ pfc(A)V_1r 0|| <  k(V )m in ||p*(A)|| • ||r0||, (72)
Pk Pk Pk

where k (V) — || V)| • ||I^_1|| is the condition number of the eigenvector m atrix  V .

If A is a normal m atrix (a diagonalizable m atrix with a complete set of orthonor­

mal eigenvectors, for which k (V) =  1), then having eigenvalues tighly clustered 

around a  single point (away from the origin) is good. Meanwhile, having the eigen­

values clustered about the origin is bad, because according to  the maximum principle 

it is impossible to  have a polynomial th a t is 1 a t the origin and less than  1 everywhere 

on some closed curve around the origin.

If the m atrix  A is nonnormal, even having the eigenvalues tightly clustered around 

1 may not tell much about the behavior of GMRES. GMRES can still have a good 

behavior if A has widely-distributed eigenvalues provided there are not too many 

distinct clusters. This can be shown by applying the GMRES m ethod to  a problem 

th a t has any nonincreasing curve representing a plot of residual norm versus iteration 

number. This phenomenon can be seen in the Subsection in Chapter 3 discussing 

about the eigenvalue spectra of the exact versus the inexact Schur complements for 

noisy da ta  case.

In the GMRES method, any vector x  in x 0 +  /Cm can be w ritten as

x  = x 0 + Vmy, (73)

where y  is an m -vector th a t minimizes \\/3ei —Hmy ||, where Hm is a Hessenberg m atrix 

obtained from incomplete orthogonalization process, and e\ is the first column of the 

n  x n  identity matrix.

As distinct from the GMRES method, which is based on the Arnoldi algo­

rithm  [73], the QMR method is based on the Lanczos algorithm. The approximate

solution Xk is of the form

Xk = x 0 + Vkyk, (74)

where yk is chosen to  minimize a quantity th a t is closely related to  the 2 -norm of the 

residual. The residual is

i~k = Vk+i(P£i ~  7fc+i,fc2/fc)- (75)

Hence, yk can be found by solving the least squares problem

min ||/?£i - T k+1,ky\\- (76)
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As in [41, p. 81, T h eo r em  5.3.1] the relation of the QMR and GMRES norm 

is as follows.

If is the GMRES residual a t step k  and r® is the QM R residual a t step k, 

then

where V*,+ 1 is the m atrix of basis vectors for the space JCk+i(A,r0) constructed by 

the Lanczos algorithm and k (-) is the condition number.

From here, if one could create a short recurrence th a t could generate well- 

conditioned basis vectors, then the QM R would be a m ethod of choice. Unfortunately, 

sometimes this is not the case. There is a  problem that can make the underlying 

Lanczos recurrence break down. We observed this phenomenon in the Section 3.8 

(Symmetric versus Nonsymmetric).

In this study, we prefer to  use GMRES on our preconditioned non-symmetric 

KKT matrices in order to  obtain robustness of solving the KKT system regardless 

of the indefiniteness and the nonsymmetry of the system.

2.3 SCHWARZ METHODS

2.3.1 Additive Schwarz Method

In this subsection we discuss algebraic projection methods known as Additive Schwarz 

methods. We adopt the notations as in [7, p. 77].

Consider Figure 1 which depicts the decomposition of discrete state  vector for a 

PD E decomposed by domain. Consider th a t A h  is the discretization of the whole 

domain fl into the coarse subdomains R  with the mesh size H  and A- is the dis­

cretization on the subdomains R { the extension of the subdomains fl, with the mesh 

size h within a distance 5, where 5 is the amount of overlap. In addition, consider 

th a t Bi = R fA 'i 1 Ri, i = 1 ,2 , . . .  ,p, where R  is a local restriction operator and R j  

is a local interpolation operator from the grids of the extended subdomains R t to  the 

grids of the subdomains R .  Similarly, R h and R fj are a global restriction operator 

and a global interpolation operator respectively from the coarse grids w ith mesh size 

H  to  the fine grids with mesh size h. Assuming th a t we want to  solve a system of 

linear equations A u  =  / ,  the Additive Schwarz preconditioner can be described as:

||r?|| < K(I4+i)||rf || (77)

(78)
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F ig . 1. Domain decomposition fo r matching grid Schwarz methods.

where r  is the residual.

This is known as two level additive Schwarz. If we drop the first term , it is a one 

level additive Schwarz. One variant of these m ethods is restricted additive Schwarz as 

the default Schwarz m ethod in software PETSc from Argonne National Laboratory 

[5]. We can see more details about this variant in [19].

As discussed in [55], if we apply these m ethods as preconditioners of the Krylov 

methods we can summarize in Table 2 for the forward elliptic problem in term s of 

theoretical condition numbers and iteration counts.. Here, for convergence scalability 

estimates, we assume th a t one subdomain per processor in a d-dimensional isotropic 

problem, where N  = h~d is the problem size and P  = H ~d is the number of processors 

in isotropic decomposition using all spatial dimensions. This estimate is for self- 

adjoint positive-definite elliptic problems. It does not apply to KKT conditions. See 

[78] for more details about the convergence behavior of these methods.

2.4 SCHUR METHODS

In this section, we consider nonoverlapping domain decomposition methods known 

as substructuring or Schur complement m ethods [7, p .78].
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Table 2
Summary o f the Schwarz methods discussed in 2.3.

Preconditioning k {B~xA) 2D  Iter. 3D  Iter.
Point Jacobi 
Domain Jacobi
1-level Additive Schwarz
2-level Additive Schwarz

0 (h ~ 2)
0 ( ( h H ) - x)
0 ( H - 2)
0 (1 )

0 ( N 1/2)
0 ( (N P V 4)
0 ( P 1!2)
0 (1 )

G ( N ^ 3) 
o ( ( N p y /6)
e>(pi/3)
0 (1 )

For simplicity of exposition, let us consider 2 -D problems. Define I  as the set of 

all interior points in all of the subdomains £1* and B  as the set of all points on the 

boundaries of the subdomains 3Q,. In order to  solve the system A u — / ,  we reorder 

u  and /  as u = (u i , u b ) t  and /  =  ( / / ,  f B)T according to  the partition. Hence, the 

system can be rew ritten as:

A T  ,  ■ • , .  -  .  <? 9 >A-ib  A b

This system can be rewritten again as a block LU-factorization as follows: 

where

S b  =  A b — AJb A j 1A ib  

is the Schur complement of A B in A. Hence, by eliminating it/, we have the equation

SBu B =  Qb  = f B — A iBA f xf i .  (81)

To solve the overall system, we solve the Schur complement system first, then 

substitute back in to  the overall system.

2.5 JACOBIAN MATRIX-FREE NEWTON-KRYLOV

Let h(x) =  0 be a system of nonlinear equations arising from a discretized PDE. To 

estimate the Jacobian-vector product with an arbitrary vector v  a t the point x, we
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use a matrix-free (Frechet) derivative as follows:

(82)

or
h(x  +  ev) — h(x)

(83)

where e is a suitably chosen small perturbation.

For an initial guess, 5x0, an initial residual, r 0, is defined as:

r 0 =  —h(x) — J5x o- (84)

Hence, iteratively, the 2th  residual can be computed as:

=  —h(x) — JSxi, (85)

where Sxi is the Newton step (correction).

Then, to  compute the correction Sxi, we can use a GMRES m ethod as follows:

where the scalars f3j are chosen in the standard way to minimize the residual [74].

From here, we see th a t GMRES only requires the action of the Jacobian in the 

form of matrix-vector products, which may be approximated by matrix-free (Frechet) 

derivative.

For some examples of using Jacobian-free methods in solving PDEs, see Knoll 

and Keyes [57], and Kelley [51, p. 57].

2.6 HESSIAN MATRIX-FREE LAGRANGE-NEWTON-KRYLOV- 
SCHUR-SCHWARZ METHOD

In one of their preconditioners, Biros and G hattas [12, 13, 14, 11] use an approximate 

state  Jacobian. In this work, we use an exact state  Jacobian generated by ADIC, 

an autom atic differentiation toolkit in C from Argonne National Laboratory [46], 

and ADM AT (autom atic differentiation for MATLAB [64]) from A. Verma, Cornell 

University [27, 28]. For the Lagrangian reduced Hessian, we use an identity matrix, 
probing techniques, and other approximations th a t are spectrally equivalent. Mean­

while, Biros and G hattas used limited memory BFGS. Our design Jacobian is also 

provided by ADIC.

6xi = Sx0 + Y L P j(J Y r  o (86)
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To solve the full system, we use a Newton framework with Hessian matrix-free 

manner on the KKT conditions, then we solve the linearized systems of equations by 

using Krylov methods.

As we mention in [55], for building the preconditioners on the outer levels we solve 

the three steps of the KKT systems as Schur complements, in the inner levels we use 

Schwarz m ethods in solving each equation for each step. Thus, we may describe our 

methods as Hessian Matrix-free Lagrange-Newton-Krylov-Schur-Schwarz methods.

2.7 GLOBALIZATION AND ROBUSTIFICATION

Newton m ethods usually converge locally. In order to  get global solutions we may 

use tru st region or line search methods. In this study we choose basic line search 

methods, applied to  inexact Newton methods, which are shown to be robust enough. 

For the detail of inexact Newton methods w ith line search, see [50, p. 135].
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CHAPTER 3 

PRECONDITIONING STRATEGIES

Preconditioning strategies are very im portant for iteratively solving the systems of 

linear equations th a t arise in large-scale optimization. These systems of equations 

may be indefinite and /or ill-conditioned. W ithout good preconditioners, the iterative 

processes converge very slowly or not a t all.

As mentioned earlier, our preconditioners consist of inner and outer precondition­

ers, where the inner preconditioner is of Schwarz type, and the outer preconditioner 

is of Schur type. In this chapter we discuss some preconditioning strategies, espe­

cially some approximations for the Schur complements. These approximations — 

probing, the J operator, and the Laplace operator — are known in solving PDEs. 

For cases in what the exact da ta  is furnished, as in one of our numerical test cases, 

the exact Schur complements are superior to  the approximations. Interestingly, for 

noisy da ta  there are no preconditioners th a t are superior in all aspects of computa­

tions among the preconditioners, including the exact ones. In some cases the exact 

Schur complement preconditioner is worse than  the inexact. Hence, we choose the 

least expensive approximation th a t provides acceptable results. This is im portant in 

practice, because usually we have noisy data.

In this study we also describe two kinds of preconditioners, linear and nonlinear. 

Our numerical experiments (e.g. 1-D Numerical Example 2) show th a t nonlinear 

preconditioners can be superior to  the linear, even for the case of noisy data. We 

describe also two formulations of KKT matrices, symmetric and nonsymmetric. Our 

numerical experiments (e.g. 2-D Numerical Example 1) show th a t although the non­

symmetric matrices may result complex eigenvalues, when using the Krylov m ethod 

GMRES, these preconditioned nonsymmetric matrices can make the iterative process 

converge about 50% faster than  the symmetric ones, since the preconditioned KKT 

m atrix is clustered away from the origin and only mildly indefinite. We examine this 

phenomenon from the convergence history of the residual norms and the spectrum 

of the preconditioned KKT matrices, as in Figure 16.
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3.1 KKT MATRIX ANALYSIS, INDEFINITENESS, AND SOME MA­
TRIX THEORY

3.1.1 KKT Matrix Analysis

As mentioned earlier, the KKT systems of the full-space approaches may have m atri­

ces th a t are indefinite and ill-conditioned. Hence, good preconditioners are required. 

The preconditioners th a t we consider in this work are Schur complement precondi­

tioners w ith respect to  the design variables (parameters).

First, we will discuss the case of symmetric KKT matrices. This is generally 

the formulation of choice for the PDE-constrained community. Biros and G hattas 

in [12, 13, 14, 11] proposed a preconditioner th a t is a block-factorization of LU  

form. Haber and Ascher [42] also use this kind of preconditioner. Biros and G hattas 

approximate the Schur complement by using Limited-memory BFGS, while Haber 

and Ascher use Gauss-Newton methods. Another preconditioner th a t is proposed by 

Batterm ann and Sachs [8 ] consist of dropping all the second derivatives except the 

second derivative in the block (2 , 2 ), in our notation below.

To more fully describe this approach, we consider the symmetric KKT m atrix 

of Equation (55). If the block (1,1) is positive definite, then the symmetric KKT 

systems of the forms (55) may have positive, negative, and zero eigenvalues. From 

(55) we can find the Schur complement of the m atrix by following 2.1.2. Hence, the 

KKT system can be w ritten as follows:

' Huu H Up J TU ' f 6u ^ (  9 u  N

0 5  0 5p — — 9s

i
os

3i \  A+ \  h  /

where S  and gs are the reduced Hessian (the Schur complement) and gradient, re­

spectively:

S  = Hpp — Jp J~ TH up +  (jp  J~ t H uu -  Hpu) J ~ XJV +  7 Rpp (8 8 )

and

9s = ~9p +  Jp Ju T9u ~  ( Jp Ju TH uu ~  H p ^  J ~ xh +  'fRp. (89)

In order to use this m atrix as a preconditioner and to get a symmetric precondi­

tioned KKT m atrix we have to  use the whole m atrix by factoring into an LU  form. 

Hence, we will have the LU  m atrix form as follows:
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H  7_1 0 I J u •0
s o

__
__

_
I

U  T ~ ln p u J  u I tT  j —T  p u 0 S  0

I 0 0 0 H Up HUUJU Jp Ju

(90)

As mentioned earlier, th is preconditioner was used by Haber and Ascher [42], 

Biros and G hattas [12, 13, 14, 11], and also Burger and M uhlhuber [16, 17]. Mean­

while, B atterm ann and Sachs [8 ] used

0

0

Ju Jp 0

(91)

In this dissertation we focus our attention on the nonsymmetric form of KKT 

systems, since the nonsymmetric cases are experimentally competitive to  the sym­

metric ones and less explored in the literature. Thus, we may rewrite KKT systems 

in the following form:

(92)
J TU Huu H up

( x + )
* 9u ^

0 Ju Jp 5u = — h

Jp Hpu Hpp H-  'y Rpp \  6 P  ) \  Qp  H" 'yHp J

7 ,  —  d 2 c  , \ T  d 2h j
ab ~  dadb  ' A  dadb  ’ a

A + SX.

dh  
da  5, and ga =  I s , for a,b  e  {p ,u}, and wherewhere Ha 

^ +
We find the Schur complement by eliminating the (3,1) and (3,2) blocks with the 

first block row and the second block row. Thus, we have

J u  H u u  H Up M (  9 u  ^

0  J u  J p 6u — — h

i..
.. o o CO 1 \  5P ) \ 9 s  /

(93)

where S  and gs are the reduced Hessian (the Schur complement) and gradient, re­

spectively:

S  =  Hpp +  7 -Rpp (J u Jp) Hup HpuJu Jp -T (Jy Jp) HUU(JU Jp)

and

gs — 9 p  ' jH p  { J u J p )  9u H p UJ u h +  (J u J p )  H UUJ U h.
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The LU  factors of the Hessian H  are

L  =

I

0

0

I
J T  J - T  U  7 - 1  _  J T  J - T U  7 - 1  T °P JU 11p u tju J p l l UU'J u  1

(94)

and r

^UU JJup
u  = 0 Ju Jp

0 0 s

The inverse of the Hessian H  is H ~ l -  u~ 1L~1

(95)

U - l
J~TJ u

0

0

and

I T 1 —

-J~THUUJU

J u 1 

0

I

0

- J - T (Hup -  HuuJ ~ l Jp)S ~ l

1JP 
s-1

- J ^ J p S - 1 (96)

0  0

I  0

J T J~ TH  IUp UU X1UU)'JU J

(97)

- J TJ~ r  - ( H° p  ° u  yJJ-pu

3.1.2 Indefiniteness and Some Matrix Theory

KKT systems are classic saddle point problems. In practice, whether symmetric or 

not, the KKT m atrix  is generally indefinite (i.e., it has eigenvalues with both  positive 

and negative real parts). For a comprehensive overview of these kinds of problems, 

including choosing the linear solvers and preconditioners, see the recent review by 

Benzi, Golub and Liesen [9] and the references therein.

To overcome the indefmiteness of a nonsymmetric matrix, Murphy, Golub and 

W athen [6 6 ] noted the following Proposition:

Proposition 3.1.2.1 (Murphy, Golub, Wathen, 2000) I f

A  =

is preconditioned by

A  B T 

C  0

V
A  0

o c a - ' - e f

(98)

(99)
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then the preconditioned matrix T  = V  1A  satisfies

T ( T  - 1 ) ( T 2 - T  — J )  =  0. (100)

Prom (1 0 0 ) this preconditioner has an attractive property, th a t is, the precondi­

tioned m atrix T  =  V ~ 1A  has a t most four distinct eigenvalues: 0,1, |  ±  Thus 

Krylov m ethods will converge w ithin four iterations. For the same block precondi­

tioner if C  = B  and S  = B A ~ l B T, we will have three distinct eigenvalues: 1 ,1  ±  

Hence, from this theoretical point of view we can see tha t the preconditioned sym­

metric KKT m atrix is preferable than  the nonsymmetric one. However, in practice 

this is not always the case, as further discussed.

The (1,1) block of the m atrix A  may be singular. Hence some modification can 

be made by changing the m atrix and the preconditioner from A  to  A  + 'yB B T. This 

is suggested by Golub and Greif [39]. They also mentioned th a t the construction of 

the preconditioner is costly for large problems.

If we assume th a t the (1,1) block is positive definite, another approach to over­

come indefiniteness is by changing the sign of the (2,1) block. However, this m ethod 

can not be applied if the (1,1) block is indefinite. To overcome this, changing from 

A  to  A  +  7 B B t  can also be tried.

Unfortunately, as observed in our numerical test cases, the m atrix or block B  

can be nearly singular. The block B  consists of the Jacobians with respect to the 

state  variable and the param eter, where the Jacobian with respect to  the param eter 

is singular. Hence, if A  is singular, then A  +  7 B B T can be singular as well. Thus, 

we can not rely on the approaches th a t are proposed by Golub et al. above.

More recently for block preconditioning of general nonsymmetric matrices, de 

Sturler and Liesen [79] have proposed a splitting of the (1,1) block of the matrix, 

which results more favorable spectrum  th a t causes faster convergence for Krylov 

subspace methods.

3.2 PROPOSED LINEAR SCHUR-SCHWARZ PRECONDITIONER

Our proposed linear preconditioners are intended for solving large-scale problems. As 

in Equation (55) our KKT m atrix is a 3 x 3 block matrix. Thus, we may construct 
the preconditioners based on smaller size blocks in the matrices compared to  Murphy, 

Golub and W athen [6 6 ].
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We construct our proposed nonsymmetric preconditioner by following Eq. (92). 

We built our first preconditioner (PC I) as in Eq. (93). Hence, the preconditioned 

m atrix is as follows:

I___ Huu

1

r j - tJu - J ~ THUUJU —J~T (Hup — HUUJ ~ 1JP) S ~1 "

0 Ju Jp 0 T-l _  T-l T q-1

Jp Hpu Hpp “I- 'yHpp 0 0 5 - 1

which is equal to
I

0

P

0  0  

I  0 

Q I

(101)

where P  = J p ~ T, and Q = - J j J ~ THuuJ ^  +  HpuJ~\
We can see th a t the spectrum of the preconditioned m atrix  is clustered.

Our first proposed preconditioner leads to the following algorithm:

Algorithm of Triangular Preconditioner
Write the vector resulting from  application of the preconditioner a sv  = vu, vp]. 

Applying a left preconditioner our preconditioning algorithm can be executed as fol­

lows, where t i ,  t 2 , and t3 denote temporaries

h =  J~x * h
t2 — Hpu * tl

*3 =  ^ * ( ( J 2’r 1 *( f f««*t i ) )

9s = - g P -  iR p  +  * ((J j ) ~ 1 * 9u) - t 3 + t2
t\ = Ju x * Jp 

£2 Hpu * £1

t3 = j p ( m - i * (H uu* t 1))

S  = Hpp + 7 ^  -  JPT * ((J j ) - 1 * Hpu) + h - t 2
Vp = S ' 1 * gs

vu =  J u 1 * (~ h  -  Jp* vp)
V\ (t/u ) * ( gu H uu * vu HUp * vp)

We find the inverses inside the algorithm by solving the related linear equations with 
Schwarz methods.

From (93) if we drop the (1,3) and (2,3) blocks, we get our second preconditioner
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(PC 2 ), and the preconditioned m atrix is follows:

1

Huu

1

r j - TJu Ju H uuJu 0

0 Ju Jp 0 J u 1 0

Jp Hpu Hpp “I- 7 Hpp 0 0 S - 1

H upS ~ l

J p S -1 (102)

which is equal to
r I  0 

0 I

P  Q (Hpp + jR p p )S ~ 1

where P  = J p ~ T, and Q = - J p f TH uuJ ~ l +  HpuJ f \
The second preconditioner is a result of dropping the blocks (1,3) and (2,3), which 

is the same as dropping the terms H up and Jp. Therefore, for applying the second 

preconditioner we simply drop all the related term s from the first algorithm above.

We apply our second proposed preconditioner as in the following algorithm: 

Algorithm of Reduced Triangular Preconditioner
Write the vector resulting from application o f the preconditioner a sv  = vu, vp\. 

Applying a left preconditioner our preconditioning algorithm can be executed as fol­

lows, where t \ ,  t2, and t3 denote temporaries

ti = J p 1 * h

t2 — Hpu * t\

h  = J j * ( ( J j ) - x * (# « « * * !))
9s = ~9p - 7 Rp + J£  * ((J u )-1 * 9u) + t2 - t 3 
t\  = Ju * Jp

t2 “  Hpu *
t3 = J Z * ( ( J z r 1 * (H u u * t1))

S  — Hpp + 7 Rpp — Jp * ((J u )-1 * Hpu) — t2 + ts 
Vp = S - 1 * gs 

V u  =  J u 1 *  ( ~ h )

v\  = (JI ) -1 * (~9u -  Huu * vu)

We find the inverses inside the algorithm by solving the related linear equations with 

Schwarz methods.

If from (93) we drop further the (1,2) block, we get our th ird  preconditioner
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(PC3), and the preconditioned m atrix will be as follows:

JTJ u

0

Hu.

'7m

up

Jp Ifpu Hpp “F H Hpp

J-T
J u 0 0

0 J u 1 0

0 0 S -

which is equal to
I

0

T T  T - l H upS ~ l

J p S -1
J T 7_T 77 7_1
J p  ° u  1 1 p u ' J u

: - i
(103)

(Hpp +  ^Rpp)S

We apply this preconditioner as follows:

Algorithm of Block Diagonal Preconditioner
Write the vector resulting from  application of the preconditioner as v — vu, vp\ . 

Applying a left preconditioner our preconditioning algorithm can be executed as fol­

lows, where t i ,  t2 , and t3 denote temporaries

h  =  J f 1 * h 

t2 Hpu ^ t\

h  = J T * { { J Z ) - l * {H uu* t l ))

gs = - g P - 7 R P + J% * ((•/J ) - 1  * 9 u) + t2 - t 3
t\ — Ju l * Jp

^ 2  —  ^ p u  *  ^ 1

S  = Hpp + 1 R pp- t f *  ((J j ) - 1 * Hpu) - t 2 + t3 

vp = S _1  * gs 

vu = J f 1 * (~h)  

vx = ( J u T 1 * i~9u)

We find the inverses inside the algorithm by solving the related linear equations with 

Schwarz methods.

Our numerical experiments show th a t the eigenvalues of the preconditioned ma­

trices using these three proposed preconditioners are clustered or well-distributed. 

Hence, for acceleration by using Krylov methods, such as GMRES, these are efficient 

linear preconditioners.
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3.3 PROPOSED NONLINEAR PRECONDITIONER

The preconditioners of this section are used to  precondition the PD E function h(x)  =

0 before we set up the Lagrangian and solve the overall system, so th a t if we use 

Newton methods, we will have more stable linear systems. See [51, p. 30] and [18]. In 

the elliptic inverse problems th a t we study in this dissertation, we precondition the 

elliptic PDE h(x) = 0 by left multiplying with inverse Laplacian with homogeneous

nonlinear preconditioners compared to  the linear preconditioners by implementing 

them  on a nonlinear elliptic PDE.

3.4 NUMERICAL EXAMPLES

In this study we implement our m ethod for one-dimensional cases in the frame­

work of MATLAB [64] and ADMAT [27, 28] on the Sun workstation of the Office 

of Computing and Communications Services (OCCS) at Old Dominion University. 

Meanwhile, for the two-dimensional cases we implement the m ethod in the frame­

work of PETSc [5] and ADIC [46] on the SUN Enterprise 10000 Starfire (E10K) with 

64 processors and Linux Cluster with 32 processors a t OCCS. In one-dimensional 

cases, our Hessians and Jacobians are computed by using ADMAT. Meanwhile, in 

the two-dimensional cases our Jacobians are computed by using ADIC. For efficient 

computation of Jacobians and Hessians, see [26, 25].

3.4.1 Numerical Example 1 (1-D)

The problem is to  recover the linear diffusivity function the param eter from the flow 

measurement in a PD E model equation. These types of linear elliptic PDEs can be 

found in the groundwater modeling problems.

Dirichlet boundaries before we solve the problems by means of Lagrangian methods. 

Hence, we have more stable KKT systems.

The first-order optimality conditions will be as follows:

(104)

(105)

(106)

In this work we dem onstrate by a numerical example the effectiveness of the
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In this numerical example we solve an inverse problem for a PD E of the form:

is the param eter, u(x) is the flow, and f ( x )  =  5 ( |)  =  1 is the source/sink, then 

subject to  boundary conditions u (0 ) =  0 . 0  and it( l)  =  0 .0 .

This example is similar to  one in Vogel’s book [8 6 , p. 90]. However, Vogel uses 

two measurements. We use only one measurement.

3.4.2 Numerical Example 2 (1-D)

The problem is to recover the nonlinear diffusivity constant as the param eter from 

the flow measurement in PD E model equation. These kinds of PDEs can be found 

in the radiation transport problems, where the PDEs are nonlinear elliptic PDEs.

In this numerical example we solve an inverse problem for a PD E of the form:

on 0 <  x  <  1 , where (3(x) and a  are the parameters, u(x) is the flow, and f ( x )  = 

0 .0 0 1  is the source distributed in the whole domain, subject to boundary conditions 

u (0 ) =  0 .1  and u( 1 ) =  1 .0 .

In this example we choose

and a  =  2.5.

3.5 NUMERICAL EXPERIMENTS FOR LINEAR PRECONDITION­
ERS

In this section we will do some experiments for the linear preconditioners. We com­

pare the preconditioners with respect to  the real or exact da ta  and the noisy data, 
and the exact and inexact Schur complements. We use the two numerical examples

V  • (jd(x)Vu(x)) =  f (x) (107)

on 0  <  x  <  1 , where
( z - 0 . 4 5 ) 2

P(x) =  1 -  0.25e 0.01 (108)

V  • (f3(x)u(x)aV u (x ))  = f (x) , (109)

(110)

above.
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3.5.1 Numerical Experiments with Example 1 

Exact Data

In this example we assume heat conduction in metal rod. We place a heat source 

a t one-third of the rod, then measure the tem perature on certain points of the rod. 

The inverse problem is to  recover the conductivity constant of the rod.

In Figure 2 we show the spectra of the preconditioned KKT matrices with exact 

Schur complements for the three preconditioners.

SPECTRUM FOR PC1 SPECTRUM FOR PC2

0.8

0.6

0.4
0.50.2

- 0.2 -0 .5

-0 .4

- 0.6
-1 .5

- 0.8

- 2,
0.51.0001

SPECTRUM FOR NO PCSPECTRUM FOR PC3
0.8

0.6
2.5

0.4

0.2

- 0.2

-0 .4

0.5
- 0.6

- 0 .8, 100 1500.5 2

F ig . 2. Spectrum o f the K K T  matrices preconditioned by the three linear precondi­
tioners with the exact Schur complements on the complex plane (axes label by real 
and imaginary parts) (top row and bottom left) and unpreconditioned on the real line 
(real values plotted against index) (bottom right) with 0 % noise.
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SPECTRUM FOR PC1 SPECTRUM FOR PC2

0.4 0.6 0.8 1

SPECTRUM FOR PC3

0.4 0.6 0.8 1

SPECTRUM  FOR NO PC

2.5

0.8

0.6

0.4

0.50.2

100 150 50 100 150

F ig . 3. Spectrum o f the K K T  matrices preconditioned by the three linear precondi­
tioners with the inexact Schur complements approximate by identity matrix on the 
complex plane (axes label by real and imaginary parts) (top row) and on the real line 
(real values plotted against index) (bottom left), and unpreconditioned on the real line 
(bottom right) with 0 % noise.

In Figure 3 the inexact Schur complements are approximated by identity matrices. 

We see th a t all the spectra, where the regularization param eters are equal to  7  =  

1 .0  x 1 0 ~8, are more clustered compared to  the unpreconditioned case as we can

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



42

see in the bottom  right of the Figure 2 and Figure 3. We will discuss the effects 

of the regularization param eters on the convergence histories, the spectra, and the 

matching between the computed or recovered param eters and the exact d a ta  in the 

next chapter.

We can see the convergence histories of the residual norms of the right-hand sides 

(gradients) of the preconditioned KKT systems with the exact Schur complements 

in the top row (with P C I (left) and PC2 (right)) and the left bottom  (with PC3) 

figures in Figure 4.

HISTORY OF KKT RESIDUAL HISTORY OF KKT RESIDUAL

10-b
d~ , Q10-’
GC -15  O10 5

Q
= 10 
£
V

10

°I0“o
3
i l 0"1O
<
Q 10'1
CO
LU

10“

1.2 1.4 1.6 1.8
ITERATION

HISTORY OF KKT RESIDUAL

1.2 1.4 1.6
ITERATION

1.8

10" '

^ o _1<DO

i l 0“1O

1 10 - ’
CO
UJ
<r
£ -2  *10

10"

^ 0"oO
2  _
CC10o
z
_ l
<
9 1 0 "  co
LUcc 
* 10"

1.2 1.4 1.6 1.8
ITERATION

HISTORY OF KKT RESIDUAL

o o o o

o o o o o o o o o o o o o o o

0 1 2 3 4 5 10
ITERATION

F ig . 4. Convergence history o f the residuals (the right-hand side o f the K K T  systems 
preconditioned by the three linear preconditioners with the exact Schur complements) 
(top left (PC I), top right (PC2), and bottom left (PCS)) and unpreconditioned (bot­
tom right) with 0 % noise.
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HISTORY OF KKT RESIDUAL HISTORY OF KKT RESIDUAL
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10"

1.5 2 2.5 3 3.5
ITERATION

HISTORY OF KKT RESIDUAL

10 '=

8 10 
_ J

2
CCO
<z>aco
LU
cc

fc1(p

1.5 2 2.5 3 3.5 4
ITERATION

HISTORY OF KKT RESIDUAL

4.5
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~ 1 0
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O10
z

1 10-9
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Sio-M
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10- ”
1.5 2 5 3

ITERATION
3.5

$0O
3
i l O -6o
z

I l O - 7

cc

w o o o o

O O G O O O O O O O O O O O O

0 1 2 3 4 5 10
ITERATION

15 20

F ig . 5. Convergence history o f the residuals (the right-hand side o f the K K T  systems 
preconditioned by the three linear preconditioners with the inexact Schur complements 
approximate by identity matrices) (top left (PCI), top right (PC2), and bottom left 
(PCS)) and unpreconditioned (bottom right) with 0% noise.

In addition, we can see the convergence histories of the residual norms of the right- 

hand sides of the preconditioned KKT systems with the inexact Schur complements in 

the top row (with P C I (left) and PC2 (right)) and the left bottom  (with PC3) figures 

in (Figure 5). Here, the inexact Schur complements are approximated by identity
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matrices. The histories of the exact Schur complements show faster convergence than  

the inexact ones. Meanwhile, the convergence history of the unpreconditioned one is 

stagnant after the th ird  iteration, as we can see in the bottom  right of Figure 4 and 

Figure 5.

Similarly, we show the matching between the computed param eters and the exact 

param eter da ta  for the exact Schur complements as the top row (with P C I (left) and 

PC2 (right)) and the left bottom  (with PC3) figures in Figure 6 .

BETA PARAMETER BETA PARAMETER

EXACT DATA 
COMPUTED DATA

1.05

0.95

LU
CD

0.85

0.75,
0.2 0.4 0.6 0.8

X

BETA PARAMETER

EXACT DATA 
COMPUTED DATA

1.05

0.95
£
LU
CD

0.9

0.85

0.8

0.75,
0.2 0.4 0.6 0.8

X

EXACT DATA 
COMPUTED DATA

1.05

0.95

UJ00
0.9

0.85

0.8

0.75,
0.2 0.4 0.6 0.8

X

BETA PARAMETER

0.8

£
LU 0.7

0.6

EXACT DATA 
COMPUTED DATA

0.4
0.2 0.4 0.6 0.8

X

F i g .  6 .  Reconstructed parameters of the systems preconditioned by the three linear 
preconditioners with the exact Schur complements (top left (PCI), top right (PC2), 
a n d  b o tto m  le ft (P C S ))  an d  u n p reco n d itio n ed  (b o tto m  rig h t) w ith  0% n o ise .
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For comparison, we show the matching between the computed param eters and 

the exact param eter da ta  for the inexact Schur complements as the top row (with 

P C I (left) and PC2 (right)) and the left bottom  (with PC3) figures in Figure 7. The 

differences are invisible. However, for the unpreconditioned case, as in the bottom  

right figures of Figure 6  and Figure 7, we can see the computed param eter does not 

m atch with the exact param eter data. Hence, without a  preconditioner the inverse 

problem does not converge.

BETA PARAMETER BETA PARAMETER

EXACT DATA 
COMPUTED DATA

1.05

0.95

LU
03

0.85

0.75, 0.2 0.4 0.6 0.8
X

BETA PARAMETER

EXACT DATA 
COMPUTED DATA

1.05

0.95<
b
GO

0.85

0.75, 0.2 0.4 0.6 0.8
X

EXACT DATA 
COMPUTED DATA

1.05

0.95

LU
CO

0.9

0.85

0.75,
0.40.2 0.6 0.8

X

BETA PARAMETER

0.9

0.6

EXACT DATA 
COMPUTED DATA

0.5

0.4,
0.2 0.4 0.6 0.8

X

F ig . 7. Reconstructed parameters o f the systems preconditioned by the three linear 
p re co n d itio n ers  w ith  th e in e x a c t S ch u r co m p lem en ts  a p p ro x im a te  by id e n ti ty  m a tr i­
ces (top left (PCI), top right (PC2), and bottom left (PCS)) and unpreconditioned 
(bottom right) with 0 % noise.
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Some Comparisons for the approximations of the Schur complements

Here, we compare some different approximations for the Schur complements of the 

th ird  type preconditioner. We approximate the Schur complements with identity 

m atrix, probing, BFGS, the Laplacian, and the J operator.

W hat we mean by probing here is th a t we approximate the unknown tridiagonal part 

of the Schur complement by tridiagonal matrix. This m ethod is less expensive then 

forming the exact Schur complement. As in Smith et al. [78] the algorithm can be 

explained as follows:

Algorithm for Probing method:
Assume that S  is the Schur complement and approximately equal to S , where

To construct the elements o f the probing matrix we use the following steps:

1. Construct u 1 =  (1,..., 1)T and u 2 =  (—1,1, —1,1, ...)T .

2. Calculate v 1 =  S u 1 and v2 =  S u 2.

3. I f  bo = bn =  0, then for i =  1 ,..., n

Probing

«i h  

b\ a2 &2
(1 1 1 )

b2 a,3 bo

ai = \ ( vi +  ( - ! ) \ 2) (1 1 2 )

and fo r  i — 1 ,..., n  — 1

bi = \ { vl  ~  ( - ! ) \ 2) ~  &i-i (113)

The last step is from the condition th a t if S  equals S, then from the ith  row of 

S  we obtain

bi-i + ai + bi — vj (114)

and

(115)

for i =  1 ,..., n.
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J Operator

This approach exploits the solution of Laplacian with homogeneous boundary condi­

tions discretized in uniform mesh on rectangular domain using a standard five-point 

(seven-point in three dimensions) finite difference stencil. For simplicity, we choose 

the case of the union of two square subdomains each with a  uniform mesh of n  x n  

interior mesh points with the mesh w idth h = l / ( n  +  1). Following the language of 

Smith et al. [78] and the natural ordering, both  and A f j  (matrices associated 

with the interior points in the subdomains) are diagonalizable by tensor product of 

the one dimensional discrete sine transform,

& ‘ = \ [ j ^ s in ( i r d -  (116)

Hence, A $  =  ( S ®  2 ) ( A ® /  +  f<8 >A )(Q ® Q ), where the diagonal m atrix A has 

components An = 4sin2( 2̂ ^ ). If we define the diagonal matrices

^  =  /  +  I a  —(A +  I a 2)1̂  (117)

and

T = { 1 -  A 2n+2)~1(I  + A 2n+2), (118)

then it can be shown th a t

S (i) =  +  I A  2 ) 1 / 2 j T 1 / 2 Q .  ( 1 1 9 )

This is the explicit eigenvalue decomposition of the Schur complement. Then, by 

dropping the T  term s and the second order term  in A, we can have the J  operator 

preconditioner

J  = QAQ. (120)

We compare the convergence histories of the residual norms of the gradients to 

each other for the approximations of the Schur complement as in Figure 8 . If we 

compare these approximate Schur complements with the exact, the fastest is the 

exact Schur complement. The slowest is the approximation by probing. Meanwhile, 

the Laplacian has the same rate as the J operator. It is interesting to  note th a t the 

identity has the same rate as the BFGS, because we might expect th a t the BFGS 

should be a better preconditioner than  the identity. This preconditioner is applied

in [1 2 , 13, 14, 1 1 ] to a problem in optimal control. The probing is very fast a t the

beginning but then stagnant a t the end.
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However, probing is still better than  the unpreconditioned case as in the bottom  

right of Figure 6  and Figure 7. For more detail about the probing techniques as well 

as the J operators in solving PDE, we refer to  Smith et al. book [78, pp. 119-124], 

[23], and the references therein, especially [52].

io­
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F ig . 8. Convergence history o f the residuals with the inexact Schur complements 
approximated by probing (top left), BFG S (top right), the Laplacian (bottom left), 
and the J  operator (bottom right) with 0% noise.

For further comparisons, we display history of the errors between the computed 

and the exact da ta  (or the solution error norm) in Figure 9.
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F ig . 9. History o f the errors between the exact and the computed parameters with 
the inexact Schur complements approximated by probing (top left), BFGS (top right), 
the Laplacian (bottom left), and the J  operator (bottom right) with 0% noise.

Notice th a t history of the errors by probing and Laplacian are coincide with 

convergence history of the KKT residuals bu t not for the BFGS and J operator. It 

is common in inverse problems th a t the fast convergence in the residual does not 

guarantee the fast convergence in the solution error due to  the ill-posedness. Hence, 

a new stopping rule is needed besides using the residual. We will discuss this rule in 

Chapter 4. The error for the probing is constant a t 0.0204 since the first iteration. 

The error for the Laplacian converges to  0.0394. The error for the J operator grows 

after the second iteration, in which it is 0.032. The error for the BFGS grows since 

the first iteration, in which it is 0.5852. From Figure 8  if we consider the maximum
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tolerance for the residual is 1.0 x 10-12, all the methods except the BFGS stop at the 
first iteration. Interestingly, and the error of the probing is the smallest as seen in 

Figure 9. Hence, in term s of solution error the probing is the best choice as a Schur 

approximation for the exact da ta  case.

The matching between the exact and the computed param eters is shown in Fig­

ure 1 0 .

BETA PARAMETER BETA PARAMETER
1.05

EXACT DATA 
COMPUTED DATA

1.05

0 .95

0.9
0 .95<

CO

0.8

0 .85
0.75

0.8 0.7 EXACT DATA 
COMPUTED DATA

0 .75 , 0.65,
0 .40.2 0.4 0.6 0.8 1 0.2 0.6 0.8

X X

BETA PARAMETER BETA PARAMETER

EXACT DATA 
COMPUTED DATA

1.05

0 .95

LU
CO

0.9

0 .85

0.8

0.75,
0.2 0.4 0.6 0.8

X

EXACT DATA 
COMPUTED DATA

1.05

0.95

£
co

0.9

0 .85

0.8

0.75 ,
0.2 0.4 0.8

X

F ig . 10. The matching between the exact and the computed parameters with the 
inexact Schur complements approximated by probing (top left), BFGS (top right), 
the Laplacian (bottom left), and the J  operator (bottom right) with 0% noise.
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Furthermore, we present the spectra of the preconditioned systems in Figure 11.

SPECTRUM PROBING PC SPECTRUM FOR BFGS PC

0.6

0.80.4

0.2 0.6
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1500 .4 0.8 1000.2 0.6

SPECTRUM FOR LAPLACIAN PC SPECTRUM FOR J  OPERATOR PC

0.80.8

0.60.6

0 .4 0 .4

0.2 0.2

100100 150 150

F ig . 11. The spectrum of the K K T  matrices preconditioned by probing on the com­
plex plane (axes label by real and imaginary parts) (top left), BFGS (top right), the 
Laplacian (bottom left), and the J  operator (bottom right) on the real line (real values 
plotted against index) with 0 % noise.

Noisy or Perturbed Data Case

The effectiveness of the th ird  (block diagonal) preconditioner (PC3) by replacing the 

Schur complement with identity m atrix compared to  the first preconditioner with 

exact Schur complement in a case with a 1% noise data  and a regularization param ­

eter 7  =  1.0 x 10- 6  can be seen in Figure 12 for the spectra of the preconditioned 

KKT matrices, and Figure 13 for the matching param eters between the computed
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and exact data. As we can see from Figure 1 2 , the eigenvalues cluster to  0 and 1 for 

both  Schur complements.

EIGENVALUES SPECTRUM EIGENVALUES SPECTRUM
1 -  "" ^ ................... .. 1 .4

0 .8
1 .2

0 .6

0 .4 1

0 .2 0 .8

0 O ^M B D D O

- 0 .2
0 .6

- 0 .4 0 .4

- 0 .6

- 0 .8
0 .2

n

F ig . 12. Spectrum of the K K T  matrices preconditioned by the linear preconditioners 
PC I using the exact Schur complement on the complex plane (axes labeled by real and 
imaginary parts) (left) and PCS using the inexact Schur complements approximate 
by identity matrix on the real line (real values plotted against index) (right) with 1 % 
noise.

To achieve this optimal result (the closest matched parameters) as in Figure 13, 

we only need two nonlinear iterations w ith minimum residual norm approximately 

equal to  1.0 x 10“9. The differences of the matching parameters are invisible. Hence, 

w ith an inexpensive approximation of the Schur complement we can still expect a 

good result for the noisy data.

Although it appears th a t the preconditioners are not significantly different, we 

still do need a preconditioner. W ithout a preconditioner the iteration will be stagnant 

as the top left figure in Figure 14. In Figure 14 we can also see the wide spectrum of 

the eigenvalues from 0 to  3.0 (bottom  right), the unmatched param eters (top right), 

and the history of the solution error norm (bottom  left).
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F ig . 13. Matching parameters between the computed and exact data with the exact 
Schur complement for PC I and the inexact (identity matrix) Schur complement for  
PCS with 1% noise.

3.5.2 Numerical Experiments with Example 2

For the exact da ta  the differences among the three proposed linear preconditioners 

are invisible. We can see from Table 3 th a t all of the preconditioners are about 

equally efficient in term  of execution time.

Table 3 
Comparison o f the preconditioners.

Preconditioner Execution (CPU) Time
(second)

PC I 168.4
PC 2 167.3
PC3 169.1
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F ig . 14. Convergence history o f the residual (top left), the matching parameter (top 
right), convergence history o f the parameter error (bottom left), and the spectrum  
on the real line (real values plotted against index) (bottom right) for  1 % noise data 
without preconditioner.

3.6  N U M E R IC A L  E X P E R IM E N T S  F O R  N O N L IN E A R  P R E C O N D I­

T IO N E R S

The result of the nonlinear preconditioner for Numerical Example 2 with a 5% noise 

can be seen in the left part of the Figure 15.
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FINAL STATE WITH 5% NOISE.
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F ig . 15. Each result when nonlinear preconditioner (left) and linear preconditioner 
(right) is applied to Example 2 with 5% noise.

3.7 COMPARISON BETWEEN THE LINEAR AND NONLINEAR 
PRECONDITIONER

We use the 1-D Numerical Example 2 as the comparison tool. Firstly, we compare 

the three linear preconditioners to  each other as in the previous subsection. Then, 

we compare one of them  (the first linear preconditioner) with the nonlinear precon­

ditioner.

We apply 5% noise to the exact d a ta  and use as initial data. Then, we find 

the exact da ta  and the parameters. Comparing the left part and the right part of 

Figure 15, we see th a t the nonlinear preconditioner is superior to the linear one in 

terms of matching the computed d a ta  to the exact data. We note th a t the param eter 

recovered by using the nonlinear preconditioner is better than  by using the linear 

one. By using the linear preconditioner we recover the param eters a  =  2.2239, 

P le f t  = 1 .0683, and (3r ight — 7.5636 with a param eter regularization 7  =  1 .0  x 10 3. 

Meanwhile, by using the nonlinear preconditioner we can recover the param eters 

a  = 2.4908, /3ief t =  1.0657, and /3right =  10.1840 with a regularization param eter 

7  =  1 .0  x 1 0 ~2.
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3.8 SYMMETRIC VS. NONSYMMETRIC KKT MATRICES

As the first comparison tool we use our 1-D Numerical Example 1, where we choose

. . ( x - 0 . 2 5 ) 2 ( x  —0 .7 5 ) 2
(3(x) =  —1 +  2.0e ooi +  l.Oe 0 .0^ .  (121)

T able  4
Comparison o f the Symmetric versus Nonsymmetric Methods.

Regularization Parameter Outer Inner Time Parameter
Preconditioner Iteration Iteration (second) Error
1 (T9:
PC I 4 4 268.4 2.85
PC2 4 7 269.1 2.85
PC3 4 1 2 268.5 2.85
PCsm 5 5 339.6 1.09
K T 11:
PC I 2 2 134.4 0.69
PC2 2 3 134.4 0.69
PC3 2 6 134.3 0.69
PCsm 2 2 136.5 0.45
1 0 - 13:
PC I 1 1 6 6 .8 0.37
PC2 1 1 67.1 0.37
PC3 1 3 67.3 0.37
PCsm 1 2 68.7 0.27

This example is adopted from Haber and Ascher [42]. For the symmetric case we 

use the SQMR (Symmetric Quasi Minimum Residual) m ethod also used by Haber 

and Ascher [42], Biros and G hattas [12, 13, 14, 11], Burger and M uhlhuber [16, 17], 

and also B atterm ann and Sachs [8 ] with the LU  preconditioner type. Meanwhile, 

for the nonsymmetric cases we use GMRES with the three proposed precondition­
ers. We implemented these in the framework of MATLAB and ADMAT with 50 

subintervals in the domain. As shown in Table 4 in terms of execution time, error 

norm, and iteration counts the preconditioners are almost indistinguishable. The

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



57

maximum tolerance of the residual (gradient) norm is 1.0 x 10-15. Hence, the non­

symmetric m ethods and preconditioners are competitive compared to the symmetric 

ones (PCsm). Our approaches are better than  the symmetric ones in term s of inde­

pendence of the regularization parameters, as we see in the 1-D case, and in terms of 

the implementation on the simple block diagonal case, as we can see in the next 2-D 

case. Here, we note th a t when using the block diagonal preconditioner the compu­

tation  of the symmetric approach becomes stagnant. Our 1-D example w ith SQMR 

also shows this. Here, the preconditioners for the symmetric cases are denoted by 

PCsm.

As a further comparison tool we consider the 2-D test case. This is the 2-D exam­

ple for Numerical Example 1, where the true conductivity a(x)  is as in the top left 

of Figure 31 and 32. We adopted this example from Vogel [85]. We implemented in 

PETSc and ADIC with 64 x 64 grids. We use the simplest preconditioners, i.e. the 

block diagonal preconditioner with the Schur complement approximated by identity 

matrix. Our numerical example shows th a t the nonsymmetric case is preferable to  

the symmetric one regarding the spectrum  and rate of convergence, as shown in Fig­

ure 16 (left) and (right) respectively.

SPECTRUM FOR GAMMA = 0.001

V) 2

>
< 0 
z  
o <
1 - 2

NONSYMMETRIC
SYMMETRIC

-1 0 1 
REAL AXIS

CONVERGENCE HISTORY FOR GAMMA » 0.001.

NONSYMMETRIC
SYMMETRIC

*-6< 10'

10'

-1010'
0 20 3010 40 50

ITERATION

F ig . 16. Results of the spectrum (left) and the residual norm history (right) for  
symmetric and unsymmetric case are implemented to the 2-D model problem with 
0 % noise.
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W ith regard to  the spectrum  as in Figure 16 (left), the symmetric case has eigen­

values th a t are closely clustered to  the origin and many negative eigenvalues (severely 

indefinite). This kind of spectrum  is undesirable for the application of Krylov m eth­

ods. Meanwhile, in the spectrum  of the nonsymmetric case the eigenvalues are clus­

tered away from the origin and mildly indefinite. For both  cases we use GMRES. 

From Figure 16 (right) we see th a t the rate of convergence for the nonsymmetric 

com putation is about 50% faster than  the symmetric.
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CHAPTER 4 

REGULARIZATION STRATEGIES

The elliptic inverse problem is generally ill-posed. Hence, regularization is needed. 

Choosing the regularization is not an easy task, because we not only need to define 

the regularization operator, bu t also we need to  determine the m agnitude of the 

regularization param eter. This makes the problem difficult even for exact data. 

For noisy d a ta  we have to  handle another problem, th a t is, a noisy operator. It is 

impossible to recover the original underlying param eter, bu t we may impose desirable 

features through choice of the regularization strategy.

In this section, we consider different regularization operators and regularization 

param eter choice rules. The regularizations we propose are iterative Tikhonov and 

Total Variation regularizations. Basically, these regularizations are Tikhonov and 

Total Variation regularizations with the regularization param eters changing during 

the iterative processes.

Our regularization is inspired by the Landweber iterative regularization th a t was 

proposed in 1951 by Landweber [62], its variants [16, 17, 76, 33], and the references 

therein. However, our iterative regularizations are based not only on the iteration 

counts as in Landweber methods, but also on the regularization param eter a. Hence, 

basically our regularization m ethods are combinations of iterative regularizations and 

functional regularizations. Therefore, the advantages of these two methods can be 

combined.

As shown in [56, pp. 109-111] for Symm’s integral equation, the Tikhonov func­

tional regularization is fast bu t unstable. Meanwhile, the Landweber iterative regu­

larization is slow but stable. By combining these two methods we hope to  achieve a 

method th a t is both  fast and stable.

In selection of the regularization param eters we combine two of the methods th a t 

we will mention later, a priori and a posteriori rules. Actually, the combined rule is 

a  direct combination of both  regulations mentioned above.

4.1 IL L -P O S E D N E S S  A N D  R E G U L A R IZ A T IO N  T H E O R Y

We adopt from Vogel’s book [8 6 , p. 16] the definition of well-posedness as follows: 

D e fin itio n  4.1 Let K  : H i ^  Ti.2 - A n operator equation
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K ( f )  =  g (122)

is said to be w e ll-p o sed  provided

•  fo r  each g £ H 2 there exists f  E H i, called a solution, for which (122) holds;

•  the solution f  is unique; and

•  the solution is stable with respect to perturbation in g. This means that i f  

K f*  = g* and K f  =  g, then f  —> /* whenever g —> g*.

A problem th a t is not well-posed is called to  be ill-posed .

For general regularization theories we can follow the notations and the explana­

tions in Kirsch [56], Isakov [47], and Vogel [8 6 ].

From Kirsch [56, p .25] we adopt the definition of the regularization strategy. 

Assume th a t there is a perturbed equation

K x s = y s (123)

relative to  the unperturbed equation

K x  = y. (124)

We need to  construct the bounded approximation R  : Y  —> X  of the (unbounded) 

inverse operator K ~ x : K ( X )  —» X .

D e fin itio n  4 .2  A regularization strategy is a fam ily of linear and bounded operators

iza : y —> X,

for a parameter choice rule a  = a (5 ,y s), such that

lim lZaK x  = x  (125)
a —>0 v '

for all x  £ X ,  i.e., the operators R aK  converge pointwise to the identity.
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4.2 A PRIORI AND A POSTERIORI PARAMETER CHOICE RULES

From the definition of regularization, a  is the regularization parameter.

The choice rules of these param eters can be divided into two categories, a priori 

and a posteriori param eter choice rules.

According to  the book by Engl et al. [34, p. 51], we define these rules as follows:

Definition 4.3 Let a  be a parameter choice rule according to Definition f .2.  I f  a  

does not depend on y s, but only on 5, then we call a  an a priori parameter choice 

rule and write a  = a(6). Otherwise, we call a  an a posteriori parameter choice rule.

The first rule depends only on the noise level, not on the noisy d a ta  itself. Hence, 

it has to  be chosen before the computational process. For exact data, this rule 

can easily be applied by a “trial and error” approach. Our numerical experiments 

show th a t upon decreasing the regularization param eter by an order of magnitude, we 

observe results th a t are close to  the optimum param eter selection. However, for noisy 

or perturbed data  this approach is very difficult to apply. It is also time-consuming.

An example of this first rule is in [34, p. 74] as Corollary 4.4 and Remark 4.5.
2

Here, it is suggested to choose a  ~  6 , where p  has to  be known. Otherwise, we

have to  use the a posteriori rules.

Meanwhile, the second rule can be determined dynamically, during the computa­

tion, and can be related to  ||T x sa — y 5\\.

One of the methods widely used th a t is based on the second rule is called dis­

crepancy principle, due to  Morozov [65]. There are several variants of this principle 

as in [83, 84],

One of the versions is as follows:

Let ga : [0, ||T ||2] —> TZ be piecewise continuous. Let there be a C  > 0 such tha t 

1% *^)! <  C, and lima^ 0 S,a(A) =  \  for all A € (0, ||T ||2], and let ra :=  1 -  Xga(X).
Furthermore, let r  >  sup{ |ra (A)| | a  > 0, A € [0, ||T ||2]}.

The regularization param eter determined by discrepancy principle is

a(S, ys) := sup{a >  0 | \\Tx6a -  y5|| <  r<5}. (126)

Unfortunately, this approach needs a priori knowledge of the error level \\Txsa —

j/5 1|. In practice, this is often difficult to  get. Therefore, this approach is not nec­

essarily superior to the previous one. However, if we have the knowledge, the last 

m ethod is the m ethod of choice. For variants of these methods, see [8 6 , Ch. 7].
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This reference also describes a m ethod th a t needs no prior information of the 

noise. It is called L-Curve method. However, the analysis in [8 6 ] shows th a t this

m ethod may not be convergent. Therefore, the prior information of the noise in the

data  should be available in solving of practical ill-posed problems.

4.3 TIKHONOV REGULARIZATION

Tikhonov regularization was proposed initially by A. N. Tikhonov [81, 82]; sometimes 

it is also called Tikhonov-Phillips regularization [70]. There are two forms of Tikhonov 

Regularization, w ithout derivative and w ith derivative.

In the discrete form, the Tikhonov regularization with a first derivative is

R(p) =  ^ ||V p ||2, (127)

while w ithout derivative it is

m  = (128)

4.4 TOTAL VARIATION REGULARIZATION

As in [8 6 , pp. 129-134] this regularization based on the following definition of the 

Total Variation (TV) of a function /  defined on the interval [0,1]:

T V ( f )  =  s u p j ]  \ f (xi)  -  f ( x t - 1)|, (129)
i

where the supremum is taken over all partitions 0  =  Xo < Xi <  ... <  x n =  1 of the 

interval.

If /  is smooth, for two space dimensions we can write:

T V ( f ) =  f 1 h v f l d x d y ,  (130)
Jo Jo

where V /  =  (§£, |£ )  denotes the gradient and |(x ,y)\ =  y/x2 + y'2 denotes the Eu­

clidean norm.

If /  is not smooth, we can represent this in weak form as follows:

T V ( f )  — sup f  [  f ( x , y ) d i v v d x d y ,  (131)
vev Jo

where V consists of vector-valued functions v = ( v i ( x , y ) , v2(x,y))  whose Euclidean 

norm is bounded by 1 and whose components Vi are continuously differentiable and
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vanish on the boundary of the unit square, divu =  ^  ^  gives the divergence of

v.

However, the weak representation is difficult to  apply. Hence, as in Vogel’s book 

[8 6 , p. 130], we can represent the approximation of the Total Variation regularizations 

in a two-dimensional space as follows:

R(p) = Jq Jo \yp \dxdy  ~  ^ /|V p |2 +  P2dx dy,  (132)

where (3 is a small positive param eter for the approximation to  the Euclidean norm.

4.5 ITERATIVE REGULARIZATION

The iterative regularization used in solving inverse problems is very simple. It de­

pends only on the iteration count as the regularization param eter. However, the 

method can be limiting in practice due to  too many iterations en route to  an accu­

rate regularized solution. One of the m ethods is Landweber Iterative Regularization.

4.5.1 Landweber Iterative Regularization

Landweber Iterative Regularization was originally used in solving first-kind Fredholm 

integral equations, and was introduced by L. Landweber in 1951. See [62], It can be 

explained as follows: Consider the following least squares fit da ta  functional

J ( f )  = \ \ \ K f - d \ \ 2. (133)

The iteration is

f v + 1 =  f v - T  grad J ( /„ ) , (134)

for v =  0 , 1 , . . . ,  where v is the iteration count, r  is chosen to  minimize J ( r )  =  

J(fv)  ~  r  grad J ( /„ ) , and 0  <  r  <

4.6 PROPOSED REGULARIZATION METHODS

As mentioned previously, we propose new types of regularizations, iterative regular­

izations based on gradient types of Tikhonov and Total Variation functionals. On 

these approaches the regularizations are not only depent on the iteration count bu t 

also on the iterative regularization param eter and the regularization functional.
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4.6.1 Iterative Tikhonov and Total Variation Regularization

Consider the Lagrangian functional

(135)

where Ud is the data, h(u,p)  is the discretized PDE, 7 *, =  fikj 0 is the iteration 

regularization param eter, and R(p) is the regularization functional.

The purpose of the m ethod is to  minimize the Lagrangian functional with respect 

to  u, p, and A for optimal values of the param eter regularization 7 .

If R(p)  is a Tikhonov functional, we call the m ethod iterative Tikhonov regu­

larization. Likewise, if R(p)  is Total Variation functional, we call it iterative Total 

Variation regularization.

4.7 STOPPING CRITERIA FOR REGULARIZED ALGORITHM

We use a stopping rule based on the discrepancy principle as follows: For noisy data,

where r  >  1 is a constant and 5 is the noise level, then we stop the iteration process. 

W ith noisy d a ta  our numerical experiments show th a t this stopping rule may

for every regularization param eter th a t we selected. W ithout this stopping rule the 

solution may converge to  a non-optimal solution, although the residual of the Newton 

step reaches the maximum tolerance. This is illustrated in the history of the solution 

error norms in Figure 27 and the history of the residual (gradient) norms in Figure 28. 

Here, we see th a t the itetarions should be stopped at the th ird  or fourth iterations.

For the comparison between Landweber and conjugate gradient m ethod applied to 

Symm’s integral equation with respect to  the stopping param eter r , see [56, p. 111]. 

The Landweber m ethod is stable but slow with respect to  the stopping param eter r. 

Meanwhile, the conjugate gradient m ethod is sensitive to the exact stopping rule but 

the error decreases very quickly. The latter has the same behavior as the Tikhonov 

regularization m ethod in [56, pp. 109-110].

if

(136)

lead to  the optim al solution (the closest approximation to  the underlying solution)
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4.8 NUMERICAL STUDY

4.8.1 Case with Exact Data

First of all, we study and compare the Tikhonov and Total Variation regularizations 

with respect to  the regularization param eters as illustrated in Figure 17 and 18, 

respectively. Then, we compare the standard (noniterative) and iterative regulariza­

tions.

SOLUTION ERROR VS GAMMA -  TIKHONOV
3 .5

2 .5

01 5
t n  l *a

•20 •1010' 10'
GAMMA 

BETA PARAMETER

EXACT DATA 
COMPUTED DATA

LU 3

0 .4 0.80.2
X

F ig . 17. Solution error norm versus th 
matching parameter for  7  =  1 .0  x 1 0 “ 
7  =  1 .0  x 1 0 ~ 12 (bottom left), and the 
(bottom right) for  0% noise data with PC

BETA PARAMETER

EXACT DATA 
COMPUTED DATA

l u 3

0.2 0.6 0.80 .4
X

BETA PARAMETER

EXACT DATA 
COMPUTED DATA

LU 3

0.2 0.4 0.6 0.8
X

: regularization parameter 7  (top left), the 
1 (top right), the matching parameter for  
matching param eter fo r  7  =  1.0 X 10_2° 
'1 and Tikhonov regularization.
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Tikhonov vs. Total Variation Regularization

In the study of the Tikhonov and the Total Variation regularizations, we use the 1-D 

Numerical Example 1 and choose the diffusivity constant

P ( x )  =

2.0 if 0.09 <  x <  0.1

5.0 if 0.225 < x <  0.5.

1 .0  elsewhere

(137)

SOLUTION ERROR VS GAMMA -  TV
BETA PARAMETER

EXACT DATA 
COMPUTED DATA

m 3

0.2 0 .4 0.6 0.810'
GAMMA X

BETA PARAMETER BETA PARAMETER

- e -  EXACT DATA
COMPUTED DATA

EXACT DATA 
COMPUTED DATA

UJ 3 LLJ 3

I By  W.  [

0.2 0 .4 0.6 1 0.2 0 .4 0.6 0.8
X X

P ig . 18. Solution error norm versus the regularization parameter 7  (top left), the 
matching parameter for  7  =  1 .0  x 1 0 ” 8 (top right), the matching parameter for  
7  =  1 .0  x 1 0 - 1 5  (bottom left), and the matching parameter fo r  7  =  1 .0  x 1 0 -1 8  

(bottom right) for  0% noise data with PC I and Total Variation regularization.
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We illustrate results based on the solution error norms versus the regularization 

param eters, and the matching between the exact param eter and the computed data  

with respect to different the regularization param eters for the Tikhonov and Total 

Variation regularization as in Figure 17 and 18, respectively.

The Tikhonov regularization is more robust than  the Total Variation regulariza­

tion, as can be seen by comparing the solution error norms vs the regularization 

param eters in the top left of Figure 17 and 18, respectively. From Figure 18 (top 

left), for Total Variation regularization) if the regularization param eter closes to zero, 

the solution error norm becomes bigger rapidly. Meanwhile, for the Tikhonov regu­

larization as in the top left of Figure 17 the solution error norm does not jum p so 

rapidly.

From the top right, left and right bottom  of Figure 17 and 18 we can see th a t the 

Total Variation regularization is better than  Tikhonov regularization for recovering 

the param eter with a jum p discontinuity. This result can also be found in the liter­

ature; see e.g. Vogel’s book [8 6 , Ch. 8 ]. However, this is not necessarily the case for 

a problem with noisy data, as we discuss in the next subsection.

For this particular test case the proposed iterative regularizations are identical 

with the regular Tikhonov and Total Variation regularizations respectively, because 

only one iteration is needed in order to  converge to  the exact solution.

Iterative vs. Noniterative

To further investigate the advantages of iterative and noniterative regularization we 

use again our 1-D Numerical Example 1 with f3(x) as Equation (121)

,  ,  ( a ; - 0 .2 5 ) 2  ( a : - 0 .7 5 ) 2
/?(*) =  — 1 +  2.0e ooi +  l.Oe 0.02 .

F irst, we run the code with fixed 7  =  1.0 x 10”9, then we run with iterative 

7  =  (0.2)fc x 10“9. From the Table 5 we can see th a t the iterative regularization 

is competitive to  or even better than  the regular regularization in terms of the itera­

tion counts, the execution-time, and the solution error norms for Numerical Example 

1 . The maximum tolerance of the residual (gradient) norm is 1.0 x 1 0 -15. Here, we 

use Tikhonov regularization.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



6 8

Table  5
Comparison of the Iterative versus Noniterative Tikhonov Regularizations.

Regularization Parameter Outer Inner Time Parameter
Preconditioner Iteration Iteration (second) Error
1 0 -9 :
PC I 4 4 268.4 2.85
PC2 4 7 269.1 2.85
PC3 4 1 2 268.5 2.85
PCsm 5 5 339.6 1.09
(0.18)k10~9-.
PC I 3 3 205.8 0.82
PC2 2 3 204.3 0.82
PC3 3 9 205.3 0.82
PCsm* 5 7 345.3 1,833

Surprisingly, for the symmetric case the computation failed; see the PCsm* (pre­

conditioner for the symmetric case) row on the bottom  of the Table 5. The iterative 

regularization caused the computation to  diverge. Though the cause for this failure 

is not yet understood, it highlights interest in the nonsymmetric case for iterative 

regularization.

4.8.2 Case with Noisy Data

Tikhonov vs. Total Variation Regularization

We assume th a t the data  have 1 % noise for the same test case as in § 4.8.1. We pose 

the noise by using a normally distributed random number generator. The stopping 

rule follows the discrepancy principle as in § 4.7.

There is an interesting observation here th a t Tikhonov regularization is more 

robust than  Total Variation regularization in the terms of solution error norms vs 

regularization param eters and the matching between the exact and the computed 

parameters. In all of these aspects the Tikhonov regularization is better than  the 

Total Variation regularization. The Tikhonov regularizations can come the closest 
to  the actual param eter, as in the left bottom  of Figure 19. According to  the left top 

of the Figure 19, the optimum solution error norm is around 3.0.
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SOLUTION ERROR NORM VS GAMMA -  TIKHONOV BETA PARAMETER
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F ig . 19. Solution error norm versus the regularization parameter 7  (top left}, the 
matching parameter for  7  =  1 .0  x 1 0 - 7  (top right), the matching parameter for  
7  =  1 .0  x 1 0 - 8  (bottom left), and the matching parameter for  7  =  1 .0  x 1 0 - 9  (bottom 
right) fo r  1% noise data with PC I and Tikhonov regularization.

Meanwhile, the solutions from the functional regularized by Total Variation is far 

from the true solution, as we see in Figure 20. We also observe from the top left of 

Figure 20 th a t the optimum solution error norm is above 6.0. This is twice as large 

as the Tikhonov approach.
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Iterative vs. Noniterative

The proposed iterative Tikhonov regularization is competitive to  the standard 

Tikhonov regularization for certain criteria. By combining the a posteriori param ­

eter selection with the iterative and functional regularization, we found interesting 

results.

SOLUTION ERROR NORM VS GAMMA -  TV
BETA PARAMETER
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2
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F ig . 20. Solution error norm versus the regularization parameter 7  (top left), the 
matching parameter for  7  =  1 .0  x 1 0 - 6  (top right), the matching parameter for  
7  =  1 .0  x 1 0 - 7  (bottom left), and the matching parameter fo r  7  — 1 .0  x 1 0 - 8  (bottom 
right) fo r  1% noise data with PC I and Total Variation regularization.
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The result of the iterative Tikhonov regularization for 1-D Numerical Example 1 

with /3(x) as Equation (108),

p(x)  =  1
(x—0.45)

0.25e_^ r

is better than  the result of the regular Tikhonov regularizations in term s of the 

matching param eters and the convergence histories of the solution error norms, re­

spectively; see Figure 21 and 22.
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0.2 0 .4 0.2 0.4 0.6 0.80.6 0.8 1

XX

F ig . 2 1 . Matching parameter for jk  =  (0.12)fc x 1 0 “ 4 (top left), the matching 
parameter fo r  7  — 1 .0  x 1 0 - 4  (top right), the matching parameter for  7  =  1 .0  x 1 0 ~ 6 

(bottom left), and the matching param eter fo r  7  — 1 .0  x 1 0 - 7  (bottom right) for  
1% noise data with PCI,  the exact Schur complements and the iterative Tikhonov 
regularization.
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Meanwhile, for the convergence histories of the residual norms, the iterative reg­

ularization is competitive to  the standard one. As in Figure 23, we see th a t the 

residual norm  of the iterative regularization converges fast in the first four iterations. 

In addition, for the second and th ird  iterations the solution error norm is a t its min­

imum as in Figure 22. Notice th a t the error grows. This is due to  the ill-posedness, 

which is common in inverse problems.
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F ig . 22. Convergence history o f the solution error norm for  7 =  (0.12)fc x 10- 4  

(top left), for  7  =  1 .0  x 1 0 - 4  (top right), for  7  =  1 .0  x 1 0 - 6  (bottom left), and 
fo r  7  =  1.0 x 10~ 7 (bottom right) for  1 % noise data with PC I, the exact Schur 
complements and Tikhonov regularization.
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F ig . 23. Convergence history o f the residual norm fo r jk  = (0.12)fc x 10- 4  (top left), 
for  7  =  1 .0  x 1 0 - 4  (top right), for~/ = 1 .0  x 1 0 - 6  (bottom left), and for  7  =  1 .0  x 1 0 - 7  

(bottom right) for  1% noise data with PC I, the exact Schur complements and the 
Tikhonov regularization.

However, as in Figure 24 the state  errors ||u — where u* is the known state 

variables and u  is the computed state  variables, are decreasing. By using the stop­

ping rule discussed in 4.7 w ith r =  1.5, for 7 =  (0.12)fe x 10- 4  the iterations can be 

stopped at the second iteration, where the solution error minimum.
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F ig . 24. Convergence history of the state error for'yk  =  (0 .1 2 )fc x 10- 4  (top left), for  
7  =  1 .0  x 1 0 ~ 4 (top right), for  7  =  1 .0  x 1 0 - 6  (bottom left), and for  7  =  1 .0  x 1 0 - 7  

(bottom right) for  1% noise data with PC I, the exact Schur complements and the 
Tikhonov regularization.

We see further th a t the solutions of the iterative Tikhonov regularization for 

different regularization param eters can achieve param eters closest to actual, as in 

Figure 25.

Other interesting results of the iterative Tikhonov regularizations are as follows:

1. The convergence histories of the solution error norms are monotonically de­

creasing. See Figure 26.
2. The spectra of the KKT matrices are clustered and independent of the regu­

larization parameters. See Figure 27.
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Fig. 25: Matching param eter for 7 fc =  (0.1)fc x 1CT1 (top left), the matching param eter 
for 7  ̂ =  (Q.8)k x 10- 8  (top right), the matching param eter for 7 *, =  (0.9131)fc x 10- 9  

(bottom  left), and the matching param eter for 7 *, =  (0 .2 1 1 )* x 1 0 - 5  (bottom  right) 
for 1% error da ta  with P C I and the iterative Tikhonov regularization.

3. The convergence histories of the residual norms are non-monotone. See Fig­

ure 28. However, even though it is so, because of the stopping rule the iteration 

process still reaches the optimal solution. The later is dem onstrated in Figure 29. 

Here, we can see the convergence history of the error data  norms are monotonically 
decreasing th a t coincide with the history of the solution error norms as in Figure 26. 

Hence, if we choose the correct stopping param eters and error levels, we still can get 

the optimum solutions. It is also shown th a t by the correct choice of the iterative
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reguralization param eter 7 *. and the stopping rule, e.g. discrepancy principal, the 

method can be more robust.
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F ig . 26. Convergence history of the solution error norm fo r  7 *, =  (0.1)fc x 10- 1  (top 
left)> for 7k =  (0.8)fc x 10- 8  (top right), for 7k =  (0.9131)fc x 10- 9  (bottom left), and 
fo r  7 k =  (0 .2 1 1 )fc x 1 0 - 5  (bottom right) for  1 % noise data with PC I, the exact Schur 
complements and iterative Tikhonov regularization.
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F ig . 27. Spectrum of the K K T  matrix fo r  7 * =  (0.1)fc x 10- 1  (top left), fo r  7 * =  
(0.8)fc X 10- 8  (top right), for  7 * =  (0.9131)fe x 10- 9  (bottom left), and for  7  ̂ =  
(0 .2 1 1 )* x 1 0 - 5  (bottom right) for  1 % noise data on the complex plane (axes label 
by real and imaginary parts) with PC I, the exact Schur complements and iterative 
Tikhonov regularization.
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and for = (0.211)* x 10-5 (bottom right) for  1% noise data with PC I, the exact 
Schur complements and iterative Tikhonov regularization.
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F ig . 29. Convergence history of the state error norm for  7 k =  (0.1)fe x 10- 1  (top 
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CHAPTER 5 

IMPLEMENTATION IN PETSC AND ADIC

In this chapter we discuss how the algorithm is implemented in the parallel software 

PD E solver PETSc and the autom atic differentiation software ADIC. We discuss how 

the data  structures and the components of the PD E solver and the PDE-constrained 

optimization algorithm can be matched. Also, we discuss how the ADIC can be used 

to  form the derivative of the subroutine of the function code.

5.1 PETSC

The Portable, Extensible Toolkit for Scientific Computing (PETSc) is a rich library 

of routines th a t can be used to  solve large-scale PD E problems in different paral­

lel computers. This library is developed by a team  consisting of mathematicians 

and computer scientists in M athematics and Computer Science Division at Argonne 

National Laboratory [5].

5.2 ADIC

Autom atic Differentiation in C (ADIC) is a software tool th a t can be used to generate 

a derivative code of a  routine of a function in C. This tool is very useful in solving 

a problem th a t needs derivatives, especially for a large-scale nonlinear PD E and a 

nonlinear optimization, since a hand-coding is error-prone. This software is also 

developed by a team  at Argonne National Laboratory [46],

5.3 INTEGRATION OF PETSC AND ADIC

Recently, the ADIC and PETSc team s have worked together to  allow use of ADIC 

within PETSc. The ADIC is the autom atic differentiation tool th a t can be used 

to  generate derivative codes of parallel function codes th a t are very difficult and 

complicated to code by hand. For more details about this capability see [1].
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5.4  D A T A  S T R U C T U R E S  A N D  IM P L E M E N T A T IO N

In this section, we discuss the data  structures of the PDE solver, the PDE-constrained 

optimization, and the implementation. The PETSc team  has created new d a ta  struc­

tures motivated by our requirements th a t can be used to solve PDE-constrained op­

timizations. However, it is nontrivial to  implement an inverse problem with this tool, 

since we need preconditioners and regularizations.

5.4.1 D a ta  S tru c tu re s  a n d  S u b ro u tin e s  fo r th e  P D E  in  P E T S c

In PETSc the data  structures are divided in two classes: distributed arrays (DA and 

DMMG) for structured grids and index sets (IS) for unstructured grids.

We use distributed arrays since our applications are based on the structured grids.

The subroutines we need for the PD E problems and the da ta  structures called in 

them  are as follows:

•  SNESCreate(comm,SNES_NONLINEAR_EQUATIONS, fesnes)

•  DACreate2d (comm, w rap, ST, M, N,m,n , d o f , s , l x , l y , & user. d a ) , where comm is 

M PI communicator, wrap is the type of the periodicity, ST is the stencil type, 

M,N are the global dimensions in each direction of the array, m,n are corre­

sponding numbers of processors in each dimension, dof is number of degrees of 

freedom per node, s is stencil width, l x , ly  are arrays containing the number of 

nodes in each cell along the x  and y  coordinates, and u s e r .d a  is the resulting 

distributed array object.

•  D A C reateG lobalV ector(user.da,&x)

•  D A C reateL ocalV ector(user. d a ,& u se r. a lpha)

•  D A SetL ocalFunction(user.da,(D A L ocalFunctionl)PD E L ocalFunction)

•  D A SetL ocalJacobian(user.da,(D A L ocalFunctionl)PD E L ocalJacobian)

•  SN ESSetFunction(snes,r,PD EForm Function,& user)

•  D A SetL ocalA dicFunction(user. da,ad_PD EFunctionLocalState)

•  SN E SSetJacobian(snes, A, J , SNESDACompJacobianWithAdic, feuser)
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•  PD EForm InitialG uess(x,& user)

•  SN E SSolve(snes,x ,& its)

5 .4 .2  D a ta  S tru c tu re s  a n d  S u b ro u tin e s  fo r th e  P D E -c o n s tra in e d  O p ti­

m iz a tio n  in  P E T S c

In the PD E problem we have only one variable vector. However, in the PDE- 

constrained optimization we have three different vectors th a t need to be stacked. 

Some of these are associated w ith spatial regions and can be decomposed together 

w ith spatially dependent fields for distributed-memory implementations while oth­

ers are global and must be consistently replicated across distributed memories. The 

stacked vectors consist of the vectors of the design variable, the state  variable, and 

the Lagrange multiplier. Since our approach is a full space method, we have a global 

vector th a t consists of these three vectors. Hence, the da ta  structures of the opti­

mization is different than  the PD E problem.

The subroutines we need for the PDE-constrained optimization and the data  

structures called in them  are as follows:

•  VecPackCreate(com m ,& user.packer)

•  DACreate2d(comm, w rap, ST,M, N,m, n , d o f , s , l x , l y , feuser. d a ) , where comm is 

M PI communicator, wrap is the type of the periodicity, ST is the stencil type, 

M,N are the global dimensions in each direction of the array, m,n are corre­

sponding numbers of processors in each dimension, dof is number of degrees of 

freedom per node, s is stencil width, l x , ly  are arrays containing the number of 

nodes in each cell along the x  and y  coordinates, and u s e r . da is the resulting 

distributed array object.

•  VecPackAddDA(user.p a c k e r , u s e r . da)

•  V ecPackA ddD A (user.packer.user. da)

•  VecPackAddDA(user.p a c k e r , u s e r .da)

•  V ecP ackC reateG lobalV ecto r(user.p a c k e r , &U)

•  D A SetL ocalA dicFunction(user.da,ad_PD ELocalFunction)
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• DASetLocalJacobian(user.da,(DALocalFunctionl) J**), 
where J** is JacobianLocalDesign

• SNESCreate(comm,SNES _N0NLINEAR_EQUATIONS,ftsnes)

• SNESSetFunction(snes,FU,LNKSFormFunct ion,&user)

• PCShellSetApply(pc,(int (*)(void*,Vec,Vec))LNKSPC,feuser)

• LNKSF ormlnit i alGues s(sne s,U ,&us er)

• SNESSolve(snes,U,&its)
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CHAPTER 6 

NUMERICAL EXPERIMENTS WITH LNKSS

In this chapter, we discuss the effectiveness of the algorithm in terms of regulariza­

tions and preconditioners. We pose a synthetic two-dimensional problem, and solve 

it by using PETSc and ADIC. We assume th a t we have the data  of the state  variable 

in a  square closed region and the da ta  of the source. We would like to  recover the 

diffusivity constant for the region. We assume th a t the true param eter is as shown 

in the top left of Figure 30 and 31.

j

1 o
y y

F ig . 30. Recovered parameters with the Tikhonov regularization fo r  exact alpha (top 
le ft), the recovered  p a ra m e te r  f o r  7  =  1.0 x  1 0 ~ 3 (to p  r igh t), th e recovered  p a ra m e te r  
fo r  7  — 1 .0  x 1 0 ~ 4 (bottom left), and the recovered parameter fo r  7  =  1 . 0  x 1 0 ~ 6 

(bottom right) for 0% noise data.
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6.1 NUMERICAL EXPERIMENTS WITH THE REGULARIZA­
TIONS

This section focuses on the effects of the regularizations on the quality of the recov­

ered parameters.

Total Variation with? ■ 0.1

F ig . 31. Recovered parameters with the Total Variation regularization fo r  exact alpha 
(top left), the recovered parameter for  7  =  0 .1  (top right), the recovered parameter 
for  7  =  1 .0  x 1 0 ~ 3 (bottom left), and the recovered parameter fo r  7  =  1 .0  x 1 0 - 4  

(bottom right) fo r  0 % noise data.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



8 6

6.1.1 Tikhonov Regularization

We use the Tikhonov functional with the derivative as in the previous chapter:

R(P) = \  IIVpll2- (138)

We apply this regularization with different regularization parameters, and their 

effects can be seen on the Figure 30.

This example is adopted from Vogel [85].

6.1.2 Total Variation Regularization

As mentioned earlier in the two-dimensional context the approximation of the Total 

Variation regularization functional is

R(p) = JQ J0 \Vp\dxdy ~  fo JQ \/|Vp|2 +  fPdxdy, (139)

where (5 is a small positive param eter for the approximation to the Euclidean norm.

Comparing the bottom  right figures of Figure 30 and Figure 31, we see th a t 

the Total Variation is better than  Tikhonov regularization in terms of the recovered 

parameters, especially in capturing the edge of the discontinuity. In addition, the 

Total Regularization seems less sensitive to  the choice of the regularization param eter.

In addition, we consider another two-dimensional example similar to  Akcelik’s 

example [2] as in Figure 32. The algorithm recovers this more difficult problem 

very well. Akcelik employes this example in wave propagation (hyperbolic inverse 

problem), whereas we use it in goundwater modelling (elliptic inverse problem).

The true param eter consists of circular disks. This figure is a rough figure, because 

the grids are 32 x 32.
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Real Alpha Circle 32x32 Alpha Circle 32x32 with p -  le -0 4  and y «  3e-05

F ig . 32. The exact parameter (left) and the recovered parameter (right) with Total 
Variation regularization fo r  7  =  3.0 x 10-5 and 0% noise data.
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CHAPTER 7 

CONCLUSIONS AND FUTURE DIRECTIONS

Inverse problems are difficult due to  ill-posedness. Hence, we need regulariza­

tions. Choosing good regularizations is also difficult, since regularization is problem- 

dependent. The problems are even more difficult due to  the difficulties in selecting 

the optimal regularization param eter. From our numerical test cases, our conclusions 

regarding regularizations are as follows:

•  Our proposed iterative regularizations are competitive to  the standard regular­

izations.

•  In the exact data  case or 0% noise data  and the param eters with some jum p 

discontinuities the Total Variation regularizations are better in capturing the 

discontinuity edge of the param eters than  the Tikhonov regularizations. How­

ever, with noisy data  the Tikhonov regularizations are more robust systems 

th an  the Total Variation regularizations. Hence, in the noisy d a ta  case the 

Tikhonov regularizations are better than  the Total Variation regularizations 

in recovering the parameters. In practice most likely we will encounter noisy 

data.

•  W ith  noisy da ta  another stopping rule based on the discrepancy principle is 

needed besides the minimum residual. Otherwise, the iteration can not reach 

the closest solution to the true param eter. This stopping rule also acts a 

posteriori as a selection rule for the regularization parameter.

Furthermore, the KKT, linear systems th a t arise in PDE-constrained optimiza­

tions are ill-conditioned and indefinite. Hence, good preconditioners and solvers are 

required. Preconditioners based on Schur complement preconditioners are difficult 

to  form and compute. Hence, good approximations of the Schur complements are 

necessary.

From our numerical study of the preconditioners, we observe that:

•  W ith  exact da ta  the exact Schur complement preconditioners are better in all 
computational aspects than  the approximations. However, with noisy d a ta  the 

differences are not clearly apparent. Hence, in practice we can use the Schur 

approximations for real life problems.
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•  The nonlinear preconditioners defined in Subsection 3.3 are better than  the 

linear one in solving inverse problems of nonlinear elliptic PDEs as we can see 

by comparing Figure 15, and we can also see from the results in Subsection 3.7.

•  The unsymmetric KKT systems and preconditioners are competitive to  the 

symmetric ones as illustrated in Table 4 in terms of execution time. The un­

symmetric KKT systems and preconditioners can lead to  more favorable results 

than  the symmetric ones in term s of the iterative regularization as in Table 5 

and in term s of the KKT m atrix  spectrum  (and also iteration counts) as in 

Figure 16. Another advantage is th a t the nonsymmetric cases do not need to 

have symmetric preconditioners. The advantages of being symmetric can be 

lost due to  being severely indefinite, as discussed in Section 3.8.

•  Our algorithms with both Tikhonov and Total Variation regularizations are 

constructed to  be applicable in parallel setting through the paradigm of domain 

decomposition of field variables and consistent replication of scalar param eters 

th a t do not uniquely belong to  any single subdomain.

In the sense of solution error norms th a t are small and recovered param eters th a t 

are close to  the exact solution (e.g., Figure 32), we also conclude th a t our algorithm 

is robust.

We propose some future directions for our research as follows:

•  Our approach has been implementable with restricted one-level Schwarz 

m ethod (as the default Schwarz m ethod in PETSc for solving PDEs). It can 

be extended to multilevel Schwarz preconditioners by using approach similar 

to  those in solving the PDE done with the multilevel methods.

•  In one-dimensional and two-dimensional test cases our algorithm is competitive 

to  or even better than  well-established PDE-constrained optim ization methods. 

There is no dimension-dependence in our logarithms. Therefore, they can be 

implemented in three dimensions, where we expect them  to be even more ef­

fective relative to  standard m ethods th a t satisfy the PD E constraints a t each 

optimization step.
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