124 research outputs found

    Subsampling MCMC - An introduction for the survey statistician

    Full text link
    The rapid development of computing power and efficient Markov Chain Monte Carlo (MCMC) simulation algorithms have revolutionized Bayesian statistics, making it a highly practical inference method in applied work. However, MCMC algorithms tend to be computationally demanding, and are particularly slow for large datasets. Data subsampling has recently been suggested as a way to make MCMC methods scalable on massively large data, utilizing efficient sampling schemes and estimators from the survey sampling literature. These developments tend to be unknown by many survey statisticians who traditionally work with non-Bayesian methods, and rarely use MCMC. Our article explains the idea of data subsampling in MCMC by reviewing one strand of work, Subsampling MCMC, a so called pseudo-marginal MCMC approach to speeding up MCMC through data subsampling. The review is written for a survey statistician without previous knowledge of MCMC methods since our aim is to motivate survey sampling experts to contribute to the growing Subsampling MCMC literature.Comment: Accepted for publication in Sankhya A. Previous uploaded version contained a bug in generating the figures and reference

    Automatic Differentiation Variational Inference

    Full text link
    Probabilistic modeling is iterative. A scientist posits a simple model, fits it to her data, refines it according to her analysis, and repeats. However, fitting complex models to large data is a bottleneck in this process. Deriving algorithms for new models can be both mathematically and computationally challenging, which makes it difficult to efficiently cycle through the steps. To this end, we develop automatic differentiation variational inference (ADVI). Using our method, the scientist only provides a probabilistic model and a dataset, nothing else. ADVI automatically derives an efficient variational inference algorithm, freeing the scientist to refine and explore many models. ADVI supports a broad class of models-no conjugacy assumptions are required. We study ADVI across ten different models and apply it to a dataset with millions of observations. ADVI is integrated into Stan, a probabilistic programming system; it is available for immediate use

    A Survey of Bayesian Statistical Approaches for Big Data

    Full text link
    The modern era is characterised as an era of information or Big Data. This has motivated a huge literature on new methods for extracting information and insights from these data. A natural question is how these approaches differ from those that were available prior to the advent of Big Data. We present a review of published studies that present Bayesian statistical approaches specifically for Big Data and discuss the reported and perceived benefits of these approaches. We conclude by addressing the question of whether focusing only on improving computational algorithms and infrastructure will be enough to face the challenges of Big Data

    Piecewise Deterministic Markov Processes for Bayesian Neural Networks

    Full text link
    Inference on modern Bayesian Neural Networks (BNNs) often relies on a variational inference treatment, imposing violated assumptions of independence and the form of the posterior. Traditional MCMC approaches avoid these assumptions at the cost of increased computation due to its incompatibility to subsampling of the likelihood. New Piecewise Deterministic Markov Process (PDMP) samplers permit subsampling, though introduce a model specific inhomogenous Poisson Process (IPPs) which is difficult to sample from. This work introduces a new generic and adaptive thinning scheme for sampling from these IPPs, and demonstrates how this approach can accelerate the application of PDMPs for inference in BNNs. Experimentation illustrates how inference with these methods is computationally feasible, can improve predictive accuracy, MCMC mixing performance, and provide informative uncertainty measurements when compared against other approximate inference schemes.Comment: Includes correction to software and corrigendum not

    Sub-sampled and Differentially Private Hamiltonian Monte Carlo

    Get PDF
    Hamiltonian Monte Carlo is a powerful Markov Chain algorithm, which is able to traverse complex posterior distributions accurately. One of the method's disadvantages is it's reliance on gradient evaluations over the full data, which quickly becomes computationally costly when the data sets grow large. By mini-batching the data set for stochastic gradient approximations we can speed up the algorithm, albeit with a reduced posterior accuracy. We illustrate by using a toy example, that the stochastic version of the method is unable to explore the exact posterior, and we show how an added friction term greatly alleviates this, when the term is adjusted carefully. We use the added stochastic error to our advantage, by turning the results differentially private. The randomness in the results masks the appearance of any single data point in the used data set, creating a way to more secure handling of sensitive data. In the case of stochastic gradient Hamiltonian Monte Carlo, we are able to achieve reasonable privacy bounds with little to no decrease in optimization performance, although finding a good the differentially private approximation of the target posterior becomes harder. In addition, we compare the previously considered privacy accounting methods to assay the privacy bounds to a new privacy loss distribution method, which is able to determine a tighter privacy profile than, for example, the moments accountant method

    Approximate blocked Gibbs sampling for Bayesian neural networks

    Full text link
    In this work, minibatch MCMC sampling for feedforward neural networks is made more feasible. To this end, it is proposed to sample subgroups of parameters via a blocked Gibbs sampling scheme. By partitioning the parameter space, sampling is possible irrespective of layer width. It is also possible to alleviate vanishing acceptance rates for increasing depth by reducing the proposal variance in deeper layers. Increasing the length of a non-convergent chain increases the predictive accuracy in classification tasks, so avoiding vanishing acceptance rates and consequently enabling longer chain runs have practical benefits. Moreover, non-convergent chain realizations aid in the quantification of predictive uncertainty. An open problem is how to perform minibatch MCMC sampling for feedforward neural networks in the presence of augmented data
    • …
    corecore