2,798 research outputs found

    Computing a k-sparse n-length Discrete Fourier Transform using at most 4k samples and O(k log k) complexity

    Full text link
    Given an nn-length input signal \mbf{x}, it is well known that its Discrete Fourier Transform (DFT), \mbf{X}, can be computed in O(nlogn)O(n \log n) complexity using a Fast Fourier Transform (FFT). If the spectrum \mbf{X} is exactly kk-sparse (where k<<nk<<n), can we do better? We show that asymptotically in kk and nn, when kk is sub-linear in nn (precisely, knδk \propto n^{\delta} where 0<δ<10 < \delta <1), and the support of the non-zero DFT coefficients is uniformly random, we can exploit this sparsity in two fundamental ways (i) {\bf {sample complexity}}: we need only M=rkM=rk deterministically chosen samples of the input signal \mbf{x} (where r<4r < 4 when 0<δ<0.990 < \delta < 0.99); and (ii) {\bf {computational complexity}}: we can reliably compute the DFT \mbf{X} using O(klogk)O(k \log k) operations, where the constants in the big Oh are small and are related to the constants involved in computing a small number of DFTs of length approximately equal to the sparsity parameter kk. Our algorithm succeeds with high probability, with the probability of failure vanishing to zero asymptotically in the number of samples acquired, MM.Comment: 36 pages, 15 figures. To be presented at ISIT-2013, Istanbul Turke

    Compressive Sensing for Spread Spectrum Receivers

    Get PDF
    With the advent of ubiquitous computing there are two design parameters of wireless communication devices that become very important power: efficiency and production cost. Compressive sensing enables the receiver in such devices to sample below the Shannon-Nyquist sampling rate, which may lead to a decrease in the two design parameters. This paper investigates the use of Compressive Sensing (CS) in a general Code Division Multiple Access (CDMA) receiver. We show that when using spread spectrum codes in the signal domain, the CS measurement matrix may be simplified. This measurement scheme, named Compressive Spread Spectrum (CSS), allows for a simple, effective receiver design. Furthermore, we numerically evaluate the proposed receiver in terms of bit error rate under different signal to noise ratio conditions and compare it with other receiver structures. These numerical experiments show that though the bit error rate performance is degraded by the subsampling in the CS-enabled receivers, this may be remedied by including quantization in the receiver model. We also study the computational complexity of the proposed receiver design under different sparsity and measurement ratios. Our work shows that it is possible to subsample a CDMA signal using CSS and that in one example the CSS receiver outperforms the classical receiver.Comment: 11 pages, 11 figures, 1 table, accepted for publication in IEEE Transactions on Wireless Communication

    Cognitive Sub-Nyquist Hardware Prototype of a Collocated MIMO Radar

    Full text link
    We present the design and hardware implementation of a radar prototype that demonstrates the principle of a sub-Nyquist collocated multiple-input multiple-output (MIMO) radar. The setup allows sampling in both spatial and spectral domains at rates much lower than dictated by the Nyquist sampling theorem. Our prototype realizes an X-band MIMO radar that can be configured to have a maximum of 8 transmit and 10 receive antenna elements. We use frequency division multiplexing (FDM) to achieve the orthogonality of MIMO waveforms and apply the Xampling framework for signal recovery. The prototype also implements a cognitive transmission scheme where each transmit waveform is restricted to those pre-determined subbands of the full signal bandwidth that the receiver samples and processes. Real-time experiments show reasonable recovery performance while operating as a 4x5 thinned random array wherein the combined spatial and spectral sampling factor reduction is 87.5% of that of a filled 8x10 array.Comment: 5 pages, Compressed Sensing Theory and its Applications to Radar, Sonar and Remote Sensing (CoSeRa) 201

    Feedforward data-aided phase noise estimation from a DCT basis expansion

    Get PDF
    This contribution deals with phase noise estimation from pilot symbols. The phase noise process is approximated by an expansion of discrete cosine transform (DCT) basis functions containing only a few terms. We propose a feedforward algorithm that estimates the DCT coefficients without requiring detailed knowledge about the phase noise statistics. We demonstrate that the resulting (linearized) mean-square phase estimation error consists of two contributions: a contribution from the additive noise, that equals the Cramer-Rao lower bound, and a noise independent contribution, that results front the phase noise modeling error. We investigate the effect of the symbol sequence length, the pilot symbol positions, the number of pilot symbols, and the number of estimated DCT coefficients it the estimation accuracy and on the corresponding bit error rate (PER). We propose a pilot symbol configuration allowing to estimate any number of DCT coefficients not exceeding the number of pilot Symbols, providing a considerable Performance improvement as compared to other pilot symbol configurations. For large block sizes, the DCT-based estimation algorithm substantially outperforms algorithms that estimate only the time-average or the linear trend of the carrier phase. Copyright (C) 2009 J. Bhatti and M. Moeneclaey
    corecore