6 research outputs found

    Super-resolution land cover mapping by deep learning

    Get PDF
    Super-resolution mapping (SRM) is a technique to estimate a fine spatial resolution land cover map from coarse spatial resolution fractional proportion images. SRM is often based explicitly on the use of a spatial pattern model that represents the land cover mosaic at the fine spatial resolution. Recently developed deep learning methods have considerable potential as an alternative approach for SRM, based on learning the spatial pattern of land cover from existing fine resolution data such as land cover maps. This letter proposes a deep learning-based SRM algorithm (DeepSRM). A deep convolutional neural network was first trained to estimate a fine resolution indicator image for each class from the coarse resolution fractional image, and all indicator maps were then combined to create the final fine resolution land cover map based on the maximal value strategy. The results of an experiment undertaken with simulated images show that DeepSRM was superior to conventional hard classification and a suite of popular SRM algorithms, yielding the most accurate land cover representation. Consequently, methods such as DeepSRM may help exploit the potential of remote sensing as a source of accurate land cover information

    Bias of area counted from sub-pixel map:Origin and correction

    Get PDF
    With the increasingly widespread use of sub-pixel mapping techniques in land cover/use mapping, more accurate area information is often required for a specific land cover type in a particular study region. However, the bias of area counted from sub-pixel maps (called area bias below), and the inadequate understanding of the area bias's origin and influential factors pose a challenge to using this information accurately. Traditional model-assisted estimators combining the map and the reference sample showed unreliable performances in the case of small sample sizes collected in target regions. This work presented a theoretical analysis of the origin of area bias. It then proposed a novel bias-adjusted estimator which can effectively deal with the small sample sizes. The theoretical analysis illustrated that area bias mainly originates from two terms, i.e., the abundance-dependent error and the probability distribution of abundances. We next developed a stratified bias-adjusted area estimator named the two-term method (TTM) by incorporating the sub-pixel map and a reference sample obtained from both target and external regions. We validated the effects of different sub-pixel mapping methods, different spatial resolutions, the varying spatial structures of statistical units on area bias, and the performance of TTM in correcting the biased areas in multiple cases. The results showed that area bias varied from zero to approximately 20% with the variation of three influential factors. TTM effectively corrected the biased area values to nearly the true values, showing approximate equivalence with the traditional stratified regression estimator (STRE) when adequate reference samples are collected sorely inside target regions. However, in cases of small samples from target regions, TTM showed significant superiority over STRE in reducing the variance and MSE due to the incorporation of external reference samples. We conclude that the theoretical analysis resulted in a better understanding of area bias counted from sub-pixel maps and an improved area estimator for dealing with the cases of small sample sizes inside target regions.</p

    The effect of the point spread function on downscaling continua

    Get PDF
    The point spread function (PSF) is ubiquitous in remote sensing. This paper investigated the effect of the PSF on the downscaling of continua. Geostatistical approaches were adopted to incorporate explicitly, and reduce the influence of, the PSF effect in downscaling. Two general cases were considered: univariate and multivariate. In the univariate case, the input coarse spatial resolution image is the only image available for downscaling. Area-to-point kriging was demonstrated to be a suitable solution in this case. For the multivariate case, a finer spatial resolution image (or images) observed under different conditions (e.g., at a different wavelength) is available as auxiliary data for downscaling. Area-to-point regression kriging was shown to be a suitable solution for this case. Moreover, a new solution was developed for estimating the PSF in image scale transformation. The experiments show that the PSF effect influences downscaling greatly and that downscaling can be enhanced obviously by considering the PSF effect through the geostatistical approaches and the PSF estimation solution proposed

    Fast and Slow Changes Constrained Spatio-temporal Subpixel Mapping

    Get PDF
    Subpixel mapping (SPM) is a technique to tackle the mixed pixel problem and produce land cover and land use (LCLU) maps at a finer spatial resolution than the original coarse data. However, uncertainty exists unavoidably in SPM, which is an ill-posed downscaling problem. Spatio-temporal SPM methods have been proposed to deal with this uncertainty, but current methods fail to explore fully the information in the time-series images, especially more rapid changes over a short-time interval. In this paper, a fast and slow changes constrained spatio-temporal subpixel mapping (FSSTSPM) method is proposed to account for fast LCLU changes over a short-time interval and slow changes over a long-time interval. Namely, both fast and slow change-based temporal constraints are proposed and incorporated simultaneously into the FSSTSPM to increase the accuracy of SPM. The proposed FSSTSPM method was validated using two synthetic datasets with various proportion errors. It was also applied to oil-spill mapping using a real PlanetScope-Sentinel-2 dataset and Amazon deforestation mapping using a real Landsat-MODIS dataset. The results demonstrate the superiority of FSSTSPM. Moreover, the advantage of FSSTSPM is more obvious with an increase in proportion errors. The concepts of the fast and slow changes, together with the derived temporal constraints, provide a new insight to enhance SPM by taking fuller advantage of the temporal information in the available time-series images

    General solution to reduce the point spread function effect in subpixel mapping

    Get PDF
    The point spread function (PSF) effect is ubiquitous in remote sensing images and imposes a fundamental uncertainty on subpixel mapping (SPM). The crucial PSF effect has been neglected in existing SPM methods. This paper proposes a general model to reduce the PSF effect in SPM. The model is applicable to any SPM methods treating spectral unmixing as pre-processing. To demonstrate the advantages of the new technique it was necessary to develop a new approach for accuracy assessment of SPM. To-date, accuracy assessment for SPM has been limited to subpixel classification accuracy, ignoring the performance of reproducing spatial structure in downscaling. In this paper, a new accuracy index is proposed which considers SPM performances in classification and restoration of spatial structure simultaneously. Experimental results show that by considering the PSF effect, more accurate SPM results were produced and small-sized patches and elongated features were restored more satisfactorily. Moreover, using the novel accuracy index, the quantitative evaluation was found to be more consistent with visual evaluation. This paper, thus, addresses directly two of the longest standing challenges in SPM (i.e., the limitations of the PSF effect and accuracy assessment undertaken only on a subpixel-by-subpixel basis). © 2020 Elsevier Inc

    Principles and methods of scaling geospatial Earth science data

    Get PDF
    The properties of geographical phenomena vary with changes in the scale of measurement. The information observed at one scale often cannot be directly used as information at another scale. Scaling addresses these changes in properties in relation to the scale of measurement, and plays an important role in Earth sciences by providing information at the scale of interest, which may be required for a range of applications, and may be useful for inferring geographical patterns and processes. This paper presents a review of geospatial scaling methods for Earth science data. Based on spatial properties, we propose a methodological framework for scaling addressing upscaling, downscaling and side-scaling. This framework combines scale-independent and scale-dependent properties of geographical variables. It allows treatment of the varying spatial heterogeneity of geographical phenomena, combines spatial autocorrelation and heterogeneity, addresses scale-independent and scale-dependent factors, explores changes in information, incorporates geospatial Earth surface processes and uncertainties, and identifies the optimal scale(s) of models. This study shows that the classification of scaling methods according to various heterogeneities has great potential utility as an underpinning conceptual basis for advances in many Earth science research domains. © 2019 Elsevier B.V
    corecore