43 research outputs found

    Quantum Distributed Algorithm for Triangle Finding in the CONGEST Model

    Get PDF

    A Simple Deterministic Distributed MST Algorithm, with Near-Optimal Time and Message Complexities

    Full text link
    Distributed minimum spanning tree (MST) problem is one of the most central and fundamental problems in distributed graph algorithms. Garay et al. \cite{GKP98,KP98} devised an algorithm with running time O(D+nlogn)O(D + \sqrt{n} \cdot \log^* n), where DD is the hop-diameter of the input nn-vertex mm-edge graph, and with message complexity O(m+n3/2)O(m + n^{3/2}). Peleg and Rubinovich \cite{PR99} showed that the running time of the algorithm of \cite{KP98} is essentially tight, and asked if one can achieve near-optimal running time **together with near-optimal message complexity**. In a recent breakthrough, Pandurangan et al. \cite{PRS16} answered this question in the affirmative, and devised a **randomized** algorithm with time O~(D+n)\tilde{O}(D+ \sqrt{n}) and message complexity O~(m)\tilde{O}(m). They asked if such a simultaneous time- and message-optimality can be achieved by a **deterministic** algorithm. In this paper, building upon the work of \cite{PRS16}, we answer this question in the affirmative, and devise a **deterministic** algorithm that computes MST in time O((D+n)logn)O((D + \sqrt{n}) \cdot \log n), using O(mlogn+nlognlogn)O(m \cdot \log n + n \log n \cdot \log^* n) messages. The polylogarithmic factors in the time and message complexities of our algorithm are significantly smaller than the respective factors in the result of \cite{PRS16}. Also, our algorithm and its analysis are very **simple** and self-contained, as opposed to rather complicated previous sublinear-time algorithms \cite{GKP98,KP98,E04b,PRS16}

    Quantum Distributed Algorithms for Detection of Cliques

    Get PDF
    The possibilities offered by quantum computing have drawn attention in the distributed computing community recently, with several breakthrough results showing quantum distributed algorithms that run faster than the fastest known classical counterparts, and even separations between the two models. A prime example is the result by Izumi, Le Gall, and Magniez [STACS 2020], who showed that triangle detection by quantum distributed algorithms is easier than triangle listing, while an analogous result is not known in the classical case. In this paper we present a framework for fast quantum distributed clique detection. This improves upon the state-of-the-art for the triangle case, and is also more general, applying to larger clique sizes. Our main technical contribution is a new approach for detecting cliques by encapsulating this as a search task for nodes that can be added to smaller cliques. To extract the best complexities out of our approach, we develop a framework for nested distributed quantum searches, which employ checking procedures that are quantum themselves. Moreover, we show a circuit-complexity barrier on proving a lower bound of the form ?(n^{3/5+?}) for K_p-detection for any p ? 4, even in the classical (non-quantum) distributed CONGEST setting

    Distributed Approximation Algorithms for Weighted Shortest Paths

    Full text link
    A distributed network is modeled by a graph having nn nodes (processors) and diameter DD. We study the time complexity of approximating {\em weighted} (undirected) shortest paths on distributed networks with a O(logn)O(\log n) {\em bandwidth restriction} on edges (the standard synchronous \congest model). The question whether approximation algorithms help speed up the shortest paths (more precisely distance computation) was raised since at least 2004 by Elkin (SIGACT News 2004). The unweighted case of this problem is well-understood while its weighted counterpart is fundamental problem in the area of distributed approximation algorithms and remains widely open. We present new algorithms for computing both single-source shortest paths (\sssp) and all-pairs shortest paths (\apsp) in the weighted case. Our main result is an algorithm for \sssp. Previous results are the classic O(n)O(n)-time Bellman-Ford algorithm and an O~(n1/2+1/2k+D)\tilde O(n^{1/2+1/2k}+D)-time (8klog(k+1)1)(8k\lceil \log (k+1) \rceil -1)-approximation algorithm, for any integer k1k\geq 1, which follows from the result of Lenzen and Patt-Shamir (STOC 2013). (Note that Lenzen and Patt-Shamir in fact solve a harder problem, and we use O~()\tilde O(\cdot) to hide the O(\poly\log n) term.) We present an O~(n1/2D1/4+D)\tilde O(n^{1/2}D^{1/4}+D)-time (1+o(1))(1+o(1))-approximation algorithm for \sssp. This algorithm is {\em sublinear-time} as long as DD is sublinear, thus yielding a sublinear-time algorithm with almost optimal solution. When DD is small, our running time matches the lower bound of Ω~(n1/2+D)\tilde \Omega(n^{1/2}+D) by Das Sarma et al. (SICOMP 2012), which holds even when D=Θ(logn)D=\Theta(\log n), up to a \poly\log n factor.Comment: Full version of STOC 201

    Distributed Edge Connectivity in Sublinear Time

    Full text link
    We present the first sublinear-time algorithm for a distributed message-passing network sto compute its edge connectivity λ\lambda exactly in the CONGEST model, as long as there are no parallel edges. Our algorithm takes O~(n11/353D1/353+n11/706)\tilde O(n^{1-1/353}D^{1/353}+n^{1-1/706}) time to compute λ\lambda and a cut of cardinality λ\lambda with high probability, where nn and DD are the number of nodes and the diameter of the network, respectively, and O~\tilde O hides polylogarithmic factors. This running time is sublinear in nn (i.e. O~(n1ϵ)\tilde O(n^{1-\epsilon})) whenever DD is. Previous sublinear-time distributed algorithms can solve this problem either (i) exactly only when λ=O(n1/8ϵ)\lambda=O(n^{1/8-\epsilon}) [Thurimella PODC'95; Pritchard, Thurimella, ACM Trans. Algorithms'11; Nanongkai, Su, DISC'14] or (ii) approximately [Ghaffari, Kuhn, DISC'13; Nanongkai, Su, DISC'14]. To achieve this we develop and combine several new techniques. First, we design the first distributed algorithm that can compute a kk-edge connectivity certificate for any k=O(n1ϵ)k=O(n^{1-\epsilon}) in time O~(nk+D)\tilde O(\sqrt{nk}+D). Second, we show that by combining the recent distributed expander decomposition technique of [Chang, Pettie, Zhang, SODA'19] with techniques from the sequential deterministic edge connectivity algorithm of [Kawarabayashi, Thorup, STOC'15], we can decompose the network into a sublinear number of clusters with small average diameter and without any mincut separating a cluster (except the `trivial' ones). Finally, by extending the tree packing technique from [Karger STOC'96], we can find the minimum cut in time proportional to the number of components. As a byproduct of this technique, we obtain an O~(n)\tilde O(n)-time algorithm for computing exact minimum cut for weighted graphs.Comment: Accepted at 51st ACM Symposium on Theory of Computing (STOC 2019

    Lower Bounds for Induced Cycle Detection in Distributed Computing

    Get PDF
    The distributed subgraph detection asks, for a fixed graph H, whether the n-node input graph contains H as a subgraph or not. In the standard CONGEST model of distributed computing, the complexity of clique/cycle detection and listing has received a lot of attention recently. In this paper we consider the induced variant of subgraph detection, where the goal is to decide whether the n-node input graph contains H as an induced subgraph or not. We first show a ??(n) lower bound for detecting the existence of an induced k-cycle for any k ? 4 in the CONGEST model. This lower bound is tight for k = 4, and shows that the induced variant of k-cycle detection is much harder than the non-induced version. This lower bound is proved via a reduction from two-party communication complexity. We complement this result by showing that for 5 ? k ? 7, this ??(n) lower bound cannot be improved via the two-party communication framework. We then show how to prove stronger lower bounds for larger values of k. More precisely, we show that detecting an induced k-cycle for any k ? 8 requires ??(n^{2-?{(1/k)}}) rounds in the CONGEST model, nearly matching the known upper bound O?(n^{2-?{(1/k)}}) of the general k-node subgraph detection (which also applies to the induced version) by Eden, Fiat, Fischer, Kuhn, and Oshman [DISC 2019]. Finally, we investigate the case where H is the diamond (the diamond is obtained by adding an edge to a 4-cycle, or equivalently removing an edge from a 4-clique), and show non-trivial upper and lower bounds on the complexity of the induced version of diamond detecting and listing
    corecore