3 research outputs found

    Improvement of One Anonymous Identity-Based Encryption

    Get PDF
    In 2009, Seo et al. proposed an anonymous hierarchical identity-based encryption (IBE). The ciphertext consists of (C1,C2,C3,C4)(C_1, C_2, C_3, C_4), where C1C_1 is the blinded message, C4C_4 is the blinded identity, both C2C_2 and C3C_3 are used as decrypting helpers. To prove its security, the authors defined five games and introduced a strong simulator who is able to select different Setups for those games. In this paper, we optimize the IBE scheme by removing one decrypting helper and the strong simulator. We show its security under the â„“\ell-computational Diffie-Hellman assumption with a normal simulator who only requires a unique Setup

    Efficient Deniable Authentication for Signatures, Application to Machine-Readable Travel Document

    Get PDF
    Releasing a classical digital signature faces to privacy issues. Indeed, there are cases where the prover needs to authenticate some data without making it possible for any malicious verifier to transfer the proof to anyone else. It is for instance the case for e-passports where the signature from the national authority authenticates personal data. To solve this problem, we can prove knowledge of a valid signature without revealing it. This proof should be non-transferable. We first study deniability for signature verification. Deniability is essentially a weaker form of non-transferability. It holds as soon as the protocol is finished (it is often called offline non-transferability). We introduce Offline Non-Transferable Authentication Protocol (ON-TAP) and we show that it can be built by using a classical signature scheme and a deniable zero-knowledge proof of knowledge. For that reason, we use a generic transform for Σ-protocols. Finally, we give examples to upgrade signature standards based on RSA or ElGamal into an ONTAP. Our examples are well-suited for implementation in e-passports

    Subversion-Resilient Signatures: Definitions, Constructions and Applications

    Get PDF
    We provide a formal treatment of security of digital signatures against subversion attacks (SAs). Our model of subversion generalizes previous work in several directions, and is inspired by the proliferation of software attacks (e.g., malware and buffer overflow attacks), and by the recent revelations of Edward Snowden about intelligence agencies trying to surreptitiously sabotage cryptographic algorithms. The main security requirement we put forward demands that a signature scheme should remain unforgeable even in the presence of an attacker applying SAs (within a certain class of allowed attacks) in a fully-adaptive and continuous fashion. Previous notions---e.g., the notion of security against algorithm-substitution attacks introduced by Bellare et al. (CRYPTO \u2714) for symmetric encryption---were non-adaptive and non-continuous. In this vein, we show both positive and negative results for the goal of constructing subversion-resilient signature schemes. Negative results. As our main negative result, we show that a broad class of randomized signature schemes is unavoidably insecure against SAs, even if using just a single bit of randomness. This improves upon earlier work that was only able to attack schemes with larger randomness space. When designing our new attack we consider undetectability as an explicit adversarial goal, meaning that the end-users (even the ones knowing the signing key) should not be able to detect that the signature scheme was subverted. Positive results. We complement the above negative results by showing that signature schemes with unique signatures are subversion-resilient against all attacks that meet a basic undetectability requirement. A similar result was shown by Bellare et al. for symmetric encryption, who proved the necessity to rely on stateful schemes; in contrast unique signatures are stateless, and in fact they are among the fastest and most established digital signatures available. As our second positive result, we show how to construct subversion-resilient identification schemes from subversion-resilient signature schemes. We finally show that it is possible to devise signature schemes secure against arbitrary tampering with the computation, by making use of an un-tamperable cryptographic reverse firewall (Mironov and Stephens-Davidowitz, EUROCRYPT \u2715), i.e., an algorithm that sanitizes any signature given as input (using only public information). The firewall we design allows to successfully protect so-called re-randomizable signature schemes (which include unique signatures as special case). As an additional contribution, we extend our model to consider multiple users and show implications and separations among the various notions we introduced. While our study is mainly theoretical, due to its strong practical motivation, we believe that our results have important implications in practice and might influence the way digital signature schemes are selected or adopted in standards and protocols
    corecore