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Abstract. Releasing a classical digital signature faces to privacy issues.
Indeed, there are cases where the prover needs to authenticate some
data without making it possible for any malicious verifier to transfer the
proof to anyone else. It is for instance the case for e-passports where the
signature from the national authority authenticates personal data. To
solve this problem, we can prove knowledge of a valid signature without
revealing it. This proof should be non-transferable.

We first study deniability for signature verification. Deniability is es-
sentially a weaker form of non-transferability. It holds as soon as the
protocol is finished (it is often called offline non-transferability).

We introduce Offline Non-Transferable Authentication Protocol (ON-
TAP) and we show that it can be built by using a classical signature
scheme and a deniable zero-knowledge proof of knowledge. For that rea-
son, we use a generic transform for Σ-protocols.

Finally, we give examples to upgrade signature standards based on RSA
or ElGamal into an ONTAP. Our examples are well-suited for implemen-
tation in e-passports.

1 Introduction

Digital signature schemes are one of the most important primitives in cryptog-
raphy. A digital signature on a document allows to bind this document with a
public key (e.g. an identity). One drawback is the privacy issue. Indeed, assume
Alice signed a message and sent both the message and the signature to Bob.
With a standard digital signature scheme Bob can verify its validity, but in ad-
dition he is able to convince anyone else of its validity. In some situations this
transferability leads to privacy issues.

Monnerat, Vaudenay, and Vuagnoux [34,47,48] studied the e-passport stan-
dards and identified the privacy issue from leaking of signatures on private data.
For instance, data such as official name, true date of birth, citizenship and a
facial image together with a digital signature could easily be released on the
Internet or sold by a malicious verifier, allowing to convince anybody of their
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authenticity. None of these data is really confidential. For instance, the true date
of birth of some person can fairly be estimated or propagated by gossiping. The
person can still claim that the gossiped date of birth is incorrect and keep it
private. What is more sensitive is a proof that a date of birth is true because the
person can no longer deny evidence that the proof is correct. For this reason, the
authors suggested to use non-transferable proof of signature knowledge. So, the
passport can convince the border patrol of the authenticity of the data without
revealing the signature.

In our scenario, we have a signer (the national authority), a prover (the e-
passport), and a verifier (the border patrol). Clearly, the passport should not
know the signing key which is kept secret by the national authority.

Full non-transferability requires a public-key infrastructure (PKI) for ver-
ifiers. Certificate verification should be secured to avoid transfer attacks using
rogue keys. While a PKI for border patrols is proposed in the EAC standard [36],
this is not enough for the privacy issue we have in mind. Indeed, the key of veri-
fiers in EAC will only be checked for verifiers in a country with agreements with
the home country. That is, non-transferability would only be enforced in friendly
countries but not in others. This seems pretty weird.

For this reason, we want to avoid PKI for verifiers and we will focus on a
weaker form of non-transferability, which holds after the protocol is complete.
That is, we enforce offline non-transferability which is equivalent to deniability
(sometimes called self-simulatability). Zero-knowledge proofs are inherently deni-
able in the plain model while zero-knowledge protocols in the common reference
string (CRS) model or the random oracle model (ROM) are not necessarily de-
niable. However, protocols in the CRS or ROM are more attractive for efficiency
reasons. So, we have to consider the notion of deniable zero-knowledge [40,41].

The above reasons motivated the study of non-transferable proof of signature
knowledge with a strong focus on the efficiency. The goal is to find a protocol
which can be implemented on e-passports for proving the knowledge of a valid
signature to a border patrol in a setting where there is no PKI for border patrols
and these latters may be dishonest. The international e-passport standard [35]
proposes the use of RSA and ElGamal-based signatures schemes. The EAC [36]
extension suggest that passports could run ECDH protocols. So, there is a little
place for public-key cryptography.

Related work. Non-transitive signatures [16,38] and deniable message authenti-
cation [17] also deal with transferability issues but do not immediately apply for
a three-party settings where an intermediate player (e.g. the e-passport) shows
to another one that some data was authenticated by an authority.

Invisible signatures (aka undeniable signatures) were invented by Chaum
and van Antwerpen [11] and they subsequently were studied in [4,9,15,23,33,37].
They are not universally verifiable, i.e. they make it impossible to tell valid
and invalid signatures apart while making the signer able to prove validity or
invalidity through an interactive protocol. Undeniable signatures only consider
a two-party setting. One issue for our case is that in order to confirm or deny a
signature, the prover must know the secret key.
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With undeniable signatures, the signer cooperation is essential. Indeed, with-
out its cooperation the signature is useless. The latter issue motivated the intro-
duction of designated confirmer signatures [10]. In short, designated confirmer
signatures work as undeniable signatures but the verification may be shifted from
the signer to the confirmer. They were designed mostly to protect the verifier
from signers who would refuse to participate in verification protocols.

Asokan, Shoup, and Waidner [1,2] proposed a solution to cross-exchange
signatures between two parties in a fair way (using a trusted third party in a
fair way). For that, they propose a way to transform a signature scheme into a
verifiable escrow scheme. A verifiable escrow scheme is based on a homomorphism
and allows to produce an escrow signature from a signature. Then, given the
escrow signature, one can verify that it is really a signature without obtaining the
signature. Finally, someone can recover the signature from the escrow signature
by using the secret key. One drawback for our application is that the escrow
signature is verifiable, thus it is some kind of signature and not deniable.

Non-transferability was studied by Jakobsson et al. [31,7] and they introduced
designated-verifier proofs. The idea is to designate the signature to a verifier
(using its public-key) and then only the designated-verifier can be convinced on
the validity of the signature. One drawback is that the verifier must be known at
the signature time. Later, Steinfeld et al. [46] introduced Universal Designated-
Verifier Signature (UDVS). This scheme applies to a three party setting: signer,
designator, and verifier. Universal refers to that any designator who obtained
a universally verifiable signature from the signer is able to designate it to a
verifier. This relies on a PKI for verifiers. The method for having every verifier
attached to a public key is an overkill. This motivated Baek et al. [3] to define a
weaker notion of non-transferability and they published the Universal Designated
Verifier Signature Proof (UDVSP). The primitive is similar to the concept of
UDVS except that no signature is given to the verifier. The designator does not
need to know the verifier, only a signature proof is given to the verifier. This
primitive assumes that verifiers are honest. Clearly, our application scenario does
not meet this assumption and this construction does not remain secure when the
verifiers may be malicious [32,45]. Indeed, considering malicious verifiers leads
to transferable proofs by using the Fiat-Shamir transform [22]. In addition, The
proposed UDVS or UDVSP constructions rely on bilinear mappings which seems
not very easy to implement in the case of e-passports.

Recently, Shahandashti, Safavi-Naini, and Baek [45] worked on Credential
Ownership Proofs (COP). There have some similar features as non-transferable
signature. However, COP allow users to copy/share the credits which is clearly
not desirable is the case of e-passports. They also protect against “double spend-
ing” which is not necessary in our case.

In this paper. To motivate our constructions, we start in Section 2 with a short
overview on e-passports. In Section 3, we introduce some preliminaries and in
particular, we recall the concept of deniable zero-knowledge in the CRS and RO
models. In Section 4, we introduce the definition of an offline non-transferable
authentication protocol (ONTAP). We propose a generic transform of a signature
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scheme into an ONTAP by using a deniable ZK proof of knowledge. In order
to build secure ONTAP, we study strong construction of proofs of knowledge
in Section 5. In particular, we study a generic transform of Σ-protocols. In
Section 6, we propose ONTAP protocols which can be efficiently executed in
constrained environments such as e-passports. In particular, we give an example
based on the Guillou-Quisquater protocol for RSA-based signatures and another
example based on the Schnorr protocol for ElGamal-based signatures.

Our work compared to others. As the UDVSP of Baek et al. [3] our ONTAP
definition requires no PKI for verifiers. UDVSP and ONTAP are conceptually
equivalent but the security notions differ. The UDVSP security from [3] uses
three definitions, restrict to known message attacks and honest verifiers while
we use two definitions, chosen message attacks and malicious verifiers. In addi-
tion to this, our instantiations of ONTAP can be built efficiently on standard
signature schemes and need no change for the signing algorithm. UDVSP does
not apply directly to RSA and ElGamal-based schemes while our proposed ON-
TAP implementations do. Our proposed implementations just require a modular
exponentiation for the prover while the proposed UDVSP constructions require
the use of bilinear mappings as well as signature transforms.

Recently, Shahandashti and Safavi-Naini [44] presented a construction for
UDVS. As we saw before, UDVS requires PKI for verifiers and thus is not
adapted in our case. However, they present a way for a signature holder to
prove his signature knowledge to a verifier. They define a signature class C for
which signatures can be converted in a public and a private part. The private
part is simulatable and there exists a proof of knowledge for the private part.
The signature holder simply needs to convert its signature, to send the public
part to the verifier, and finally to prove his knowledge of the private part. They
use this definition to designate a signature to a verifier by using a Fiat-Shamir
transform on the interactive proof. Except the transform, we use a similar idea,
i.e. a signature in two part, one simulatable and the other provable. The authors
does not give any security proof (since it is not their main contribution). They
use a classical Σ-protocol and thus their proof of knowledge is HVZK only. As
seen before, HVZK is clearly not enough for the application we have in mind.
Here we strengthen the knowledge proofs, we give formal security proofs and
examples of implementations. Finally the scheme of [44] may loose deniability if
a malicious verifier registers a rogue key.

2 Passive Authentication for MRTD

E-passports, formally called machine-readable travel documents (MRTD), are
now available in many countries [35]. They use an embedded RFID chip to show
evidence of a traveler identity through wireless communication.

The memory of the chip is organized in standard files: several data groups
and one security object document (SOD). There are only two mandatory data
groups: DG1 includes basic information such as the name of the person, its
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gender, date of birth, citizenship, as well as the passport number and validity;
and DG2 contains a facial picture of the owner. The SOD includes the digest
of each data group and a digital signature of this list of digests issued by the
national authority. Clearly, the SOD gives evidence of someone’s true name, or
true age, or true gender, or true citizenship, etc. Providing the data groups and
the SOD is called passive authentication.

Since all data is readable, chip cloning is possible. To solve this issue, there
is an optional active authentication (AA) protocol. In that case, the chip pos-
sesses a pair public/private key. The public key is stored in a DG (and thus
authenticated) while the private key is in a secure part of the memory (and so
not clonable). Following AA, the reader simply sends a challenge and the chip
signs it and give it back.

Due to the wireless access, data could be captured without the agreement
by the holder. Following the standard, access to the chip can be protected using
basic access control (BAC). In short, it proves to the chip that the reader have
an optical access to the first page. It is not a real access control since anyone can
implement an e-passport reader and read any passport without being authorized
by public authorities.

BAC is by far insufficient since the new generation of e-passport will contain
more private information such as fingerprint, address, etc. For this, the European
Union is now promoting an extended access control (EAC) [36] which is based on
more elaborate cryptographic protocols (semi-static ECDH key agreement with
certificate) and terminal authentication based on a specific PKI. This PKI is also
known to suffer from weaknesses (namely, the unreliable revocation procedure).
In addition to this, EAC is only meant to protect non-mandatory data groups
since mandatory ones should still be accessible to countries with no agreement
to read extra information. This means that the SOD is not protected by EAC
so will still leak evidence that a given protected data group is correct. Clearly,
an adversary can still distinguish a correct EAC-protected data group from an
incorrect one without being authorized to read it.

For this reasons, we propose to have the signature part of the SOD hidden
and passive authentication replaced by some deniable authentication protocol.
Note that the chip is able to carry out some RSA computation in AA. Therefore,
we can assume that chips are able to run one or two RSA computations in the
deniable authentication protocol.

3 Preliminaries

Let S be a finite set. We write s ∈u S to say that s is picked uniformly from S.
Throughout this article the term “algorithm” stands for a probabilistic polynomial-

time (PPT) Turing machine modeled by deterministic functions in terms of an
input and random coins.

We denote by protP(α),V(β)(γ) an instance of the protocol “prot” between P
and V. The element γ denotes the common input of all participants, e.g. public
keys, while α (resp. β) describes the private input of P (resp. V). Note that
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when the protocol is not known or is implicitly known, the interaction between
the two parties can be noted by 〈P(α),V(β)〉(γ).

In some cases, we need to only describe the view of B and we denote it by
ViewB(protA,B(·)). We call “the view of B” all inputs known by B (including the
random tape and messages received by B). All other messages can be computed
from the view and the B algorithm.

Classical Digital Signature (DS) Schemes. We denote by M and S the mes-
sage space and the signature space respectively. A (classical) digital signature
(DS) scheme is defined by the three following algorithms: The (Kp,Ks) ←
setup(1λ) algorithm generates a key pair from a security parameter λ. The
σ ← sign(Ks,m) algorithm outputs a signature σ ∈ S of a message m ∈M. The
b = verify(Kp,m, σ) tells whether the pair (m,σ) is valid (b = 1) or not(b = 0).

The scheme is complete if for any (Kp,Ks) ← setup(1λ), any message m,
and any σ ← sign(Ks,m), then verify(Kp,m, σ) = 1. The standard security
requirement for a DS is the existential unforgeability against a chosen-message
attack (EF-CMA) put forth by Goldwasser et al. [28]. This property ensures that
nobody except the signer S can output a valid signature σ̂ for any new message
m with a non-negligible probability.

Definition 1 (Security of DS). Consider an adversary A against S. A plays a
game against a challenger C who can sign messages. A is allowed to make queries
to a signing oracle. The goal of A is to yield a valid pair (m̂, σ̂) such that m̂ was
never sent to the signing oracle. The signature scheme is said EF-CMA-secure
if no PPT adversary A can win this game with non-negligible probability.

Proof of Knowledge and Deniable Zero-Knowledge. Let R ⊆ {0, 1}∗ × {0, 1}∗
be a binary relation with a polynomial-size witness, i.e., for any (x,w) ∈ R we
have |w| ≤ poly(|x|). Let LR be a language related to the binary relation R.
LR is the set of all x such that there exists a witness w and (x,w) is in R, i.e.
LR = {x : ∃w s.t. (x,w) ∈ R}.

Let (P,V) be a pair of interactive Turing machines. For a given x ∈ LR, P
wants to prove to V that he knows the corresponding witness w. For this, P and
V will use an interactive proof with common input x noted proofP(w),V(x). At
the end, P should have convinced V that he knows w. V outputs accept or reject.
In order to formalize the notion of proof of knowledge we need to introduce the
concept of knowledge extractor Ext. The Ext algorithm gets input x and access
to the prover, while he attempts to compute w such that (x,w) ∈ R.

Consider any proof of knowledge between a prover P and a verifier V. Zero-
knowledge means that no information leaks to the verifier except the validity of
the statement. This concept was formalized by Goldwasser, Micali, and Rack-
off [26,27]. The main idea behind zero-knowledge is that any verifier should be
able to run the simulator by himself (instead of interacting with a prover). How-
ever in the CRS model, the simulator is able to choose crs while no verifier is able
to do that in reality. For this reason, we use the concept of deniability [40,41].
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Definition 2 (Deniable Zero-Knowledge Proof of Knowledge). Let crs
be any common reference string (CRS). Let H be a random oracle. Let κ(x) be a
real valued function. proofPH(w),VH(x, crs) is a proof of knowledge for the relation
R with soundness error κ(x) if the following holds :

– Efficiency: P and V are polynomially bounded.
– Completeness: On common input x, crs, if P has a witness w such that

(x,w) ∈ R, then 〈PH(w),VH〉(x, crs) always outputs accept.
– Soundness: Given a Turing machine P∗H, crs and H, let ε(x) be the prob-

ability that 〈P∗H,VH〉(x, crs) accepts. There exists an extractor Ext and a
constant k such that for any crs, any H, any P∗, and any x, if ε(x) > κ(x),
then ExtP

∗
(x) outputs a witness w such that (x,w) ∈ R within expected time

O
(

|x|k
ε(x)−κ(x)

)
where an access to P∗ only counts as one step.

A proof of knowledge proofPH,VH(·) for a relation R is deniable zero-knowledge
if for any PPT V∗, there exists a PPT simulator SimH such that

{crs, H, ViewV∗(proofPH(w),V∗H(z)(x, crs))}z∈{0,1}∗,x∈LR
for arbitrary w ∈ R(x)

and
{crs, H, SimH(x, z, crs)}z∈{0,1}∗,x∈LR

are computationally indistinguishable.

When crs and H are constant and H is polynomially computable, we obtain the
definition in the standard model. When crs is constant, we obtain the random
oracle model. When H is constant and polynomially computable, we obtain the
CRS model. When V∗ is restricted by V, i.e. V∗ = V, we obtain the honest
verifier zero-knowledge (HVZK) definition.

It seems that the need for deniablity makes the CRS model collapse down to
the plain model (see Pass [41]). Indeed, there exists an efficient generic transfor-
mation of deniable zero-knowledge protocols from the CRS model into the plain
model. However this transformation adds some more rounds which increases the
round complexity. So, deniable ZK protocols in the CRS model may still be
attractive in practice.

Commitment Schemes. We define a keyed commitment scheme by the two fol-
lowing algorithms: The (Kp,Ks)← setup(1λ, R) algorithm generates a pair pub-
lic/private key given random coins R. The c = com(Kp,m, r) algorithm allows
to compute the commit value c for a given message m by using the public key
Kp and random coins r. Knowing both c, m, and r (and Kp), the commitment
is checked by c = com(Kp, m, r). A commitment scheme should be perfectly
hiding, meaning that for any Kp generated by setup, c ← com(Kp,m, r) has
a distribution which is independent from m. We assume that it is uniform. It
should also be computationally binding, meaning that for any PPT algorithm
given a random Kp generated by setup, the probability that it finds r,r′,m,m′

such that m 6= m′ and commit(Kp,m, r) = commit(Kp,m
′, r′) is negligible.



8 Jean Monnerat, Sylvain Pasini, and Serge Vaudenay

Trapdoor commitment schemes were introduced by Brassard, Chaum, and
Crépeau [6]. A trapdoor commitment scheme is a keyed commitment scheme
extend by a third algorithm, equiv, which defeats the binding property by using
the secret key Ks. For any Kp,Ks generated by setup, any m, any ĉ, and any
execution r̂ ← equiv(Ks,m, ĉ), we have ĉ = com(Kp,m, r̂).

For instance, a trapdoor commitment based on the discrete logarithm prob-
lem was proposed by Boyar and Kurtz [5]. Another trapdoor commitment scheme
was proposed by Catalano et al. [8] based on the Paillier’s trapdoor permuta-
tion [39].

Random Oracle Commitment Scheme. In the RO model, we can use the RO
commitment scheme. Let H be a random oracle. The com algorithm with input
m simply returns c = H(m‖r). To check the validity of the commit value c, given
the message m′ and the used random coins r′, it is enough to check c = H(m′‖r′).

4 Offline Non-Transferable Authentication Protocol

Definition 3 (ONTAP). We define an offline non-transferable authentication
protocol (ONTAP) by the two following algorithms and the interactive verifica-
tion protocol:

– The (Kp,Ks)← setup(1λ) algorithm generates a key pair.
– The σ = (σp, σs) ← sign(Ks,m) algorithm outputs a signature σ ∈ S of a

message m ∈M. σ is split in a public part σp and a private part σs.
– The iProofP(σs),V(Kp,m, σp) protocol allows a prover P to convince a verifier

V that he knows a σs to complete σp in a valid signature for m. At the end
V accepts or rejects.

The scheme is complete if for any (Kp,Ks) ← setup(1λ), any message m,
and any (σp, σs)← sign(Ks,m), V always accepts in iProofP(σs),V(Kp,m, σp).

The UDVSP [3] uses a KeyGen algorithm which is equivalent to our setup
algorithm. The Sign algorithm outputs a classical signatures universally verifiable
by using the Verify algorithm, there is a Transform algorithm which generates a
modified signature (with a public and secret part) from the universally verifiable
one. Our sign algorithm may be built with the Sign and Transform algorithms
from the UDVSP and conversely. We removed the Verify algorithm since it is
useless with our definition. Finally, there is an interactive proof IVerify as our
iProof. So, the two definitions are conceptually equivalent. The main difference
comes from the security requirements.

The ONTAP is secure if it satisfies the next two definitions.

Definition 4 (Offline Non-Transferability of ONTAP). Consider an ad-
versary A against the ONTAP. A plays a game with a challenger C. The goal
of A is to get evidence that some message m̂ was signed. During the train-
ing phase, A is allowed to query a sign oracle denoted Sign. After the training
phase, A selects some m̂, C signs it and reveals σ̂p. Then, A runs a session of



Efficient Deniable Authentication for Signatures 9

iProofP(bσs),A(Kp, m̂, σ̂p) protocol. At the end of the game, A outputs all input
queried to Sign and its state λ. We introduce Sim which plays the same game but
selects no m̂ and runs no iProof protocol.

A (or Sim) C
Kp←−−−−−−−−−−−−−−−−−− (Kp, Ks)← setup(1λ)

∀i ∈ 1..` : select mi

mi−−−−−−−−−−−−−−−−−−→
σp,i‖σs,i←−−−−−−−−−−−−−−−−−− Sign

skipped by Sim:

select bm bm−−−−−−−−−−−−−−−−−−→ (bσp, bσs)← sign(Ks, bm)
bσp←−−−−−−−−−−−−−−−−−−

iProofC(bσs),A(Kp, bm,bσp)

←−−−−−−−−−−−−−−−−→
Prover

output m1‖ . . . ‖m`‖λ
Fig. 1: ONTAP Non-Transferable Game.

The ONTAP scheme is said offline non-transferable if for any adversary A
there exists a simulator Sim such that their output in the game of Fig. 1 are
computationally indistinguishable.

Definition 5 (Unforgeability of ONTAP). Consider an adversary A against
the ONTAP. A plays a game with a challenger C. The goal of A is to convince C
by running the iProof protocol that he knows σ̂s to complete σ̂p in a valid signa-
ture for m̂. During a training phase, A is allowed to query a sign oracle denoted
Sign. On input message m, Sign answers the complete valid signature (σp, σs).
After this training phase, A selects a m̂ and a σ̂p with m̂ not sent to Sign. A
simulates a prover to a honest verifier (see Fig. 2).

A C
Kp←−−−−−−−−−−−−−−−−−− (Kp, Ks)← setup(1λ)

∀i ∈ 1..` : select mi

mi−−−−−−−−−−−−−−−−−−→
σp,i‖σs,i←−−−−−−−−−−−−−−−−−− Sign

select bm, bσp
bm‖bσp−−−−−−−−−−−−−−−−−−→

iProofA(bσs),C(Kp, bm,bσp)

←−−−−−−−−−−−−−−−−→ Verifier

return Verifier output
A wins if Verifier accepts and bm not queried to Sign.

Fig. 2: ONTAP Unforgeability Game.

The ONTAP scheme is said unforgeable if no PPT adversary A can make
the honest verifier accepting the game of Fig. 2 with non-negligible probability.

Clearly, Def. 5 implies unforgeability in the sense of Def. 1 since anyone able
to forge a signature is also able to win the game of Fig. 2.
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In Def. 5, we could give access to non-concurrent prover oracles to the adver-
sary A∗. Suppose it is the case and we denote them by Proverj ’s. These oracles
simulate the behaviour of an honest prover P in iProofP(σ∗s,j),A∗(Kp,m

∗
j , σ
∗
p,j).

Each oracle Proverj is setup with a given message m∗j and several iProof execu-
tions can be requested for the same m∗j and some signature (σp, σs). Executions
to the same Proverj cannot be performed concurrently. This definition of un-
forgeability can be reduced to Def. 5 which uses no prover oracle. Suppose A∗ is
limited to m Prover oracles. We split A∗ in several adversaries A∗1 to A∗m playing
modified games. Each A∗i play with C where all Proverj for j 6= i are replaced
by a query to the sign oracle and a simulation for the iProof protocol. So, only
the Proveri in the game with the adversary Ai uses a Prover oracle. Clearly,
Pr[A∗ succeeds] ≤ ∑m

i=1 Pr[A∗i succeeds]. Now we define adversaries A′i: each
one plays the same game than A∗i except than Proveri is simulated by Sim as
defined in Def. 4. By using the offline non-transferability property, the state of
adversary A∗i is computationally indistinguishable from the one of adversary A′i,
so Pr[A∗ succeeds] ≤∑m

i=1 Pr[A′i succeeds] + negl. This proves that introducing
a Prover oracle in Def. 5 does not strengthen our unforgeability notion when
offline non-transferability is granted.

Theorem 6 (ONTAP construction). Let S be a classical digital signature
scheme in which the sign algorithm outputs a signature splittable in two parts:
a public part σp and a private part σs. We assume there exists an algorithm
simulate such that σp ← simulate(Kp,m) is computationally indistinguishable
from the one generated by sign(Ks,m). Let iProof be a deniable zero-knowledge
proof of knowledge for witness σs in the relation

R(Kp‖m‖σp, σs)⇐⇒ verify(Kp,m, σp‖σs) .

If S is EF-CMA-secure, then the ONTAP (setup, sign, iProof) is secure.

The required signature scheme S should be in the class C defined in [44] which
includes many signature schemes. Note that there exists a Σ-protocol for any
signature scheme since any NP relation has one [44]. However, such a protocol
is in general not efficient. Thanks to the next section, we transform Σ-protocols
into a denial ZK proof of knowledge.

Proof. We start with the constructed ONTAP scheme and consider the ONTAP
security games. Assuming that S is EF-CMA-secure, the public signature is
simulatable, and iProof is deniable ZK, we want to show that the ONTAP is
unforgeable and offline non-transferable.
Unforgeability: We consider an adversary A playing the ONTAP unforgeabil-
ity game with a challenger C as depicted on Fig. 2. A is bounded by a complexity
T and is limited by ` queries to the oracle Sign. We split A in two parts: A1,
which represents the three first moves of A on Fig. 2 and outputs a state λ, and
A2(λ), which represents the last two moves of A. Thanks to the soundness, Ext
fed with A2(λ) produces σ̂s such that verify(Kp, m̂, σ̂p, σ̂s) holds. Hence, running
λ← ASign

1 , then ExtA2(λ) wins in the EF-CMA game which is not possible.
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Offline Non-Transferability: We construct Sim by running A until m̂ is sub-
mitted. Then, Sim runs σ̂′p ← simulate(Kp, m̂) and continues to simulate A by
feeding it with σ̂′p. Clearly, A with the simulated σ̂′p reaches a state which is
indistinguishable from A with a true signature σ̂p. Then, we use the simulator
for iProof to simulate the final state (and output) from A. ut

5 Deniable ZK from Σ-Protocols

The notion of Σ-protocol represents an important tool for the design of zero-
knowledge protocols. Below, we first briefly recall the required material and refer
to Damg̊ard [14] for a detailed treatment. Then, we present a generic transform
from any Σ-protocol into a deniable zero-knowledge proof of knowledge.

A Σ-protocol is a special 3-move honest-verifier zero-knowledge proof of
knowledge for a relation R. We recall that for a pair (x,w) ∈ R, x is a com-
mon input for P and V and w is a private input for P. We usually denote the
transcript (i.e., the three exchanged messages) by (a, e, z) and call the transcript
“accepting” if an honest verifier V would accept the corresponding interactive
proof execution. In Σ-protocols, e is a random bit-string which is (for the honest
verifier) independent from a.

To fully characterize a Σ-protocol, we specify the algorithms which generate
a and z, the domain of e, and the verifying algorithm executed by the verifier at
the end. Let us denote them by PR1, PR2, {0, 1}t, and VER respectively. Finally,
a Σ-protocol can be described formally as depicted on Fig. 3 where the notation
$P (resp. $V) represents the random tape of the prover P (resp. verifier V).

P(w; $P) (x) V(·; $V)

a = PR1(x, w; $P)
a−−−−−−−−−−→
e←−−−−−−−−−− e = trunct($V)

z = PR2(x, w, e; $P)
z−−−−−−−−−−→ b = VER(x, a, e, z)

Fig. 3: A Generic Σ-protocol.

In addition to the above restrictions, a Σ-protocol must achieve efficiency and
completeness following Def. 2, and must satisfy the two following conditions:
Special Soundness. For any x ∈ LR and any two accepting transcripts on
input x, (a, e, z), (a, e′, z′) with e 6= e′, there exists a polynomial-time extractor
Ext(x, a, e, e′, z, z′) which outputs a bit-string w such that (x,w) ∈ R.
Special HVZK. There exists a polynomial-time simulator Sim which for any x
and a random e outputs a and z such that (a, e, z) has an identical probability
distribution to the transcript generated by P and V on input x.

The special soundness (resp. special HVZK) guarantees that a Σ-protocol is
sound (resp. HVZK). We define a weaker notion as follows.

Definition 7 (κ(x)-weak Σ-protocol). Let κ be a real function. A κ(x)-weak
Σ-protocol is a Σ-protocol with the special soundness property modified as fol-
lows:
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For any x ∈ LR, any a, any e ∈ {0, 1}t, there exists a unique z such that
VER(x, a, e, z) = 1. Denote z = Resp(x, a, e).
There exists a polynomial-time algorithm Ext such that for any x ∈ LR, any
a, and any e ∈ {0, 1}t, we have

Pr
e′∈u{0,1}t

[(x, Ext(x, a, e, e′, Resp(x, a, e), Resp(x, a, e′))) ∈ R] ≥ 1− κ(x)

Special soundness is achieved for κ(x) = 2−t. κ(x)-weak Σ-protocols are sound
with soundness error κ(x). This comes from a simplified version of the proof of
Th. 9 below.

Here we give two examples of κ(x)-weak Σ-protocols. The first example is the
Guillou-Quisquater (GQ) protocol [30,29]. Let N = pq, e, and d be respectively
an RSA modulus, the public and private exponents. For simplicity we assume
that e is prime. (In practice, RSA keys use e = 3 or e = 65537). The GQ protocol
allows to prove the knowledge of x such that X = xe mod N , see Fig. 4a. The
second example is from Schnorr [42,43]. Let g be the generator of a group G
of prime order q. The Schnorr protocol allows to prove the knowledge of the
discrete logarithm x in G of the element X = gx, see Fig. 4b.

P(x) (N, e, X) V
pick y ∈u Z∗N

Y = ye Y−−−−−−−→
r←−−−−−−− pick r ∈u {0, 1}t

z = yxr z−−−−−−−→ check ze ?
= Y Xr

(a)

P(x) (g, q, X) V
pick y ∈u Zq

Y = gy Y−−−−−−−→
r←−−−−−−− pick r ∈u {0, 1}t

z = y + rx mod q
z−−−−−−−→ check gz ?

= Y Xr

(b)

Fig. 4: The GQ (a) and Schnorr (b) Protocols.

Theorem 8. Let t be the bit-length of the second move. The GQ protocol with

prime exponent e is a d
2t

e e
2t -weak Σ-protocol. The Schnorr protocol in a group of

prime order is a 2−t-weak Σ-protocol.

Proof. The case of the Schnorr protocol is well known, so we concentrate on the
GQ protocol.

Clearly we can define PR1, PR2, VER. Special HVZK is straightforward. Here
we only need to prove that it is κ(x)-weak. Note that given the two first moves
(Y ,r), there exists a unique third move (z) for which V will accepts. It remains to
prove the soundness and for that we should build an extractor Ext which outputs
the witness given any (I, Y, r1, Resp(I, Y, r1)) and a random (r2, Resp(I, Y, r2))
with I = (N, e, X).

Given (N, e, X), Y , r1, r2, z1, z2 such that ze
1 = Y Xr1 (mod N) and ze

2 =
Y Xr2 (mod N) if gcd(r1 − r2, e) = 1 we can find some integers a and b such
that ae + b(r1 − r2) = 1 by using the Extended Euclid algorithm and then can
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compute x = Xazb
1z
−b
2 mod N which satisfies

xe = Xae(ze
1)

b(ze
2)
−b = Xae(Y Xr1)b(Y Xr2)−b = Xae+b(r1−r2) = X (mod N)

so a valid witness is extracted. Clearly, the GQ protocol is κ(x)-weak where

κ(x) = maxr1 Prr2 [gcd(r1 − r2, e) 6= 1] and we find that κ(x) ≤ d 2
t

e e
2t since

κ(x) =
2t−1∑

k=0

1gcd(r1−k,e)6=1 Pr[r2 = k] =
1
2t

#{multiples of e in [r1, r1 + 2t − 1]} .

ut
We transform a HVZK protocol into a deniable ZK protocol by adding a

commitment step. This idea was proposed by Goldreich-Micali-Wigderson [25]
and then reused by Goldreich-Kahan [24]. They prove that it is possible to
achieve ZK in the standard model with a polynomial round complexity. Here, we
want to prove that it is possible to achieve deniable ZK in the CRS or RO models
with only 4 moves. At the same time, we achieve ZK in the standard model
with one extra move. The extra move is necessary for sending the fresh public-
key which replaces the common reference string. Note that Cramer-Damg̊ard-
MacKenzie [12] proposed a transform to achieve ZK but with a bigger round
complexity while Damg̊ard [13] proposed an efficient construction but without
deniability. Clearly, for our application, deniability is mandatory in the CRS and
RO models.

P(w; $P) (x) V(·; $V)
R← random($P)

(Kp, Ks)← setup(1λ, R)
Kp−−−−−−−−−−→ e ∈u {0, 1}t, r ← random($V)
c←−−−−−−−−−− c = com(Kp, e, r) (resp. c = H(e, r))

a = PR1(x, w; $P)
a−−−−−−−−−−→“

resp. c
?
= H(e, r)

”
c

?
= com(Kp, e, r)

e‖r←−−−−−−−−−−
z = PR2(x, w, e; $P)

z‖R−−−−−−−−−−→ ( bKp, bKs)← setup(1λ, R)

bKp
?
= Kp

b = VER(x, a, e, z)

Fig. 5: A Generic Transform of Σ-protocol.

The protocol in the standard model is depicted on Fig. 5. Clearly, the prover
should be ensured that nobody knows the trapdoor Ks. Consequently, the prover
generates the key pair himself, he gives the public key on the first (extra) move
and the private key on the last one.

Theorem 9. Let C be a trapdoor commitment scheme, π be a κ(x)-weak Σ-
protocol, and π′ be its generic transform as depicted on Fig. 5.

For any arbitrary large integer k, π′ is a zero-knowledge proof of knowledge
in the standard model with soundness error κ′(x) = max

(
κ(x), 1/|x|k)

.
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1. Ext′ picks $P and set up P∗ with $P.
2. Ext′ plays the role of the verifier and runs a complete protocol with P∗ who gives the trapdoor at

the end. If this protocol does not fail (event A1), this defines a first transcript c, a, e1‖r1, z1‖Ks

such that VER(x, a1, e1, z1, $p) outputs 1.
3. Ext′ picks e2 and computes r2 ← equivocate(Ks, c, e2). Ext′ runs another complete protocol

with P∗ set up with the same $p and uses messages c and e2‖r2. If this protocol does not fail
(event A2), this defines a second transcript c, a, e2‖r2, z2 such that VER(x, a, e2, z2) outputs 1.

4. If one of the two protocols failed, Ext′ aborts. Otherwise, using Ext with inputs (a, e1, z1) and
(a, e2, z2), Ext′ recovers w such that (x, w) ∈ R.

Fig. 6: The Knowledge Extractor Ext

Clearly, if the trapdoor Ks is known by the verifier, the protocol remains
honest-verifier zero-knowledge (this is essentially the Σ-protocol) but loses de-
niability. Indeed, a malicious verifier could take e = OW(a) and open c to e.
The response z would become a transferable proof following the Fiat-Shamir
paradigm [22] to transform interactive proofs into non-interactive ones. Thus,
the Kp key should be trusted by the prover who believes that the verifier does
not know the corresponding private key. In practice, a costless pragmatic solu-
tion could consist of using a hash function at the place of the commitment. This
is essentially the instantiated variant with RO commitment scheme.

Theorem 10. Let C be a trapdoor commitment scheme (resp. the RO commit-
ment scheme). Let π be a κ(x)-weak Σ-protocol and let π′ be its generic trans-
form as depicted on Fig. 5 where Kp is the public key as setup in the commitment
scheme (resp. where H is a random oracle).

For any arbitrary large integer k, π′ is a deniable zero-knowledge proof of
knowledge in the CRS model (resp. in the RO model) with soundness error
κ′(x) = max

(
κ(x), 1/|x|k)

.

Proof (Th. 9 and Th. 10). Efficiency and completeness of the protocols of Fig. 5
are trivial. So, we concentrate in proving the properties of soundness and deniable
zero-knowledge.

Soundness. Let k be an arbitrary positive large integer and let P∗ be any
malicious prover which passes the protocol π′ for x with an honest verifier V
with probability ε(x). Let κ′(x) be the soundness error of the protocol π′. By
Def. 2 it is assumed that ε(x) > κ′(x).

Recall that for any x ∈ LR given two random accepting transcripts (a, e1, z1)
and (a, e2, z2) there exists a polynomial-time extractor Ext which outputs the
witness w such that (x, w) ∈ R with probability 1− κ(x) (over e2).

We construct the extractor Ext′ as described on Fig. 6. Thanks to the prop-
erty of equiv, the extractor Ext′ simulates perfectly a honest verifier for the ma-
licious prover P∗. Given $P and c, both protocols are independent and succeed
with the same probability, let us denote it by Pr[Aj |$P, c] = p$P,c for j = 1, 2.
The expected value of p$P,c over the random choice of $P and c is ε(x). No mat-
ter whether Aj holds, let zj be the unique z such that VER(x, a, ej , zj) = 1. Let
B the event that Ext(a, e1, e2, z1, z2) succeeds, i.e. Pr[¬B] ≤ κ(x). Furthermore,
Pr[¬B|A1] ≤ κ(x). We want to compute Pr[A1 ∧A2 ∧B] and we have :

Pr[A1 ∧A2 ∧B|$P, c] = Pr[A1 ∧A2|$P, c]− Pr[A1 ∧A2 ∧ ¬B|$P, c] .
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1. Sim launches V∗ with a fresh random tape $V and receives c from V∗.
2. Sim picks a random a using the same distribution than PR1(·). Thanks to the special HVZK

property, this can be simulated by using Sim′ and obtaining (a, e0, z0). Sim then gives a to V∗.
3. Sim receives e and r from V∗ and checks c = commit(Kp, e, r).

– If c is not valid, Sim stops the simulation and releases the transcript ($V, Kp, x, a).
– Otherwise, i.e., if c is valid,

(a) Sim rewinds V∗ with the same random tape $V and receives the same c from V∗

since $V is unchanged. Sim can thus guess that c will open to e.
(b) Sim gives x and e to the simulator Sim′ described above in order to obtain a “good”

transcript (a′, e, z′). Sim sends a′ to V∗.
(c) Sim receives e′ and r′ from V∗ and checks c = com(Kp, e′, r′).

• If c is not valid, Sim goes back to step 3a.
• Otherwise, i.e., if c is valid

i. If e 6= e′ (double opening of c), Sim aborts.
ii. Sim finishes by yielding ($V, Kp, x, a′, z′) of the last interaction with V∗.

Fig. 7: The Simulator Sim

Focusing on the right term, we have Pr[A1∧A2∧¬B|$P, c] ≤ Pr[A1∧¬B|$P, c] ≤
p$P,cκ(x), while the other term is Pr[A1 ∧ A2|$P, c] = p2

$P,c, and we obtain
Pr[A1 ∧A2 ∧B|$P, c] ≥ p$P,c(p$P,c − κ(x)). Finally, we compute the expected
value over the $’s and c’s and using the Jensen’s inequality on the function
x 7→ x2, we obtain Pr[A1 ∧ A2 ∧ B] ≥ ε(x)(ε(x) − κ(x)). We conclude that the
average number of running time of Ext′ before it succeeds is 1/ε(x)

ε(x)−κ(x) . Following

Def. 2, it suffices to prove that 1/ε(x)
ε(x)−κ(x) ≤ |x|k

ε(x)−κ′(x) for any ε(x) > κ′(x). It is
the case when κ′(x) = max

(
κ(x), 1/|x|k)

.
In the case of the CRS model, the extractor Ext′ can be assumed to know

the trapdoor of the commitment. In the standard model (Fig. 5), Ext′ learns the
trapdoor when event A1 holds. In the case of the RO commitment, the proof is
essentially the same: Ext′ creates two entries H(e1, r1) = H(e2, r2) = c in the H
table and executes both protocols by using only one entry. If by any chance P∗

queries H with the other, the extraction fails. But this happens with negligible
probability.

Deniable Zero-Knowledge. First, note that in the standard model deniable
zero-knowledge (dZK) and zero-knowledge (ZK) are equivalent. So, in this proof
we will show that all three protocols are dZK. This will imply that the protocol
of Fig. 5 is ZK in the standard model.

We need to build a simulator able to simulate the interactions with any
verifier V∗ as described in Def. 2. Note that in the CRS model, the simulator
Sim is not allowed to generate the common reference string. Let Kp = crs be any
uniformly distributed random string. Kp is given to both, to Sim and to V∗.

Recall that given any x ∈ LR and a random e there exists a polynomial-time
simulator Sim′ which outputs a transcript (a, e, z) which has identical probability
distribution than a transcript generated by P and V on input x.

We construct the simulator Sim as depicted on Fig. 7. Clearly, Sim always
returns a complete protocol view from V∗. It is either of type I ($V,Kp, x, a) or
of type II ($V,Kp, x, a′, z′). The $V distribution is perfect as well as the view
of type I. Let A$V,Kp,x be the set of all a such that V∗($V,Kp, x, a) returns a
valid c. The distribution of a′ is the marginal distribution from PR1 conditioned
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to set A$V,Kp,x. So, it is perfectly simulated as well. Finally, the unique z′ is well
simulated (the negligible probability of breaking the commitment has a negligible
influence on the distribution) so we have a computationally indistinguishable
simulator.

We still have to show that the average number of rewindings is polynomial.
Let $V be a fix random tape of V∗. Given x ∈ LR, for w s.t. (x,w) ∈ R we
consider V∗$V

interacting with P(x,w). We denote by p$V(x) the probability
that the commitment is incorrectly opened to P. Since the distribution of a can
be simulated, p$V(x) does not depend on w. The number of executions of P is 1
with probability 1−p$V(x) and 1+ 1

p$V (x) with probability p$V(x), so it is 2 on
average. This proves that the simulator runs in expected polynomial time. ut

6 ONTAP in practice

6.1 ONTAP with Generic RSA Signature

We propose ONTAP-RSA: an ONTAP scheme which is generic for RSA-based
signatures. It is based on a zero-knowledge variant of the GQ protocol.

Consider h ← Hseed(m) be a formatting function and b = V(h,m) be a 0/1
check function returning 1 iff the formatted h is consistent with m.

Definition 11 (Generic RSA). A generic RSA signature works in a group Z∗N
with N ← pq and p, q are two k

2 -bit random prime numbers. Let e, d such that
ed ≡ 1 (mod ϕ(N)) and e is prime (since several variant are commonly used we
do not specify further the generation algorithm). The private key is Ks ← (N, d)
and the corresponding public key is Kp ← (N, e)

The signature of message m consists of the tuple σ = (σs, σp). The algo-
rithm picks a random seed, computes the formatted message σp ← Hseed(m), the
signature σs = σd

p mod N (using the private key Ks), and outputs σp and σs.
There exists a verification algorithm verify(Kp,m, σp, σs) which outputs 1 if

the signature is valid, i.e. V(σp, m) = 1 and σe
s mod N = σp, and 0 otherwise.

Clearly, the PKCS#1v1.5, ISO/IEC 9796, RSA-PSS standards all fit into this
category.

The iProof protocol works as depicted on Fig. 8a. Note that Kp is the public-
key related to the signature scheme while crs is the one related to the commit-
ment scheme. The way to adapt to the plain model or random oracle model is
straightforward.

Theorem 12. Assume that the RSA-based signature is EF-CMA-secure and
that the com(·) is a trapdoor commitment scheme in the CRS model (resp. RO
commitment scheme). The digital signature scheme added to the signature proof
iProof of Fig. 8a forms a ONTAP scheme as defined in Def. 3 in the CRS model
(resp. RO model). The soundness error is d 2t

e e/2t.

With an extra round we obtain an ONTAP in the standard model (see Fig. 5).
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P(σs) (crs, Kp, m) V
σp = σe

s mod N pick r̃
pick r ∈u {0, 1}t

pick y ∈u Z∗N
c←−−−−−−− c = com(crs, r, r̃)

Y = ye mod N
Y ‖σp−−−−−−−→ V(σp, m)

?
= 1

c
?
= com(crs, r, r̃)

r‖r̃←−−−−−−−
z ← yσr

s mod N
z−−−−−−−→ ze ?

= Y σr
p (mod N)

(a)

P(σp, σs) (crs, Kp, m) V
pick r̃
pick r ∈u {0, 1}t

pick ` ∈u [0, q − 1]
c←−−−−−−− c = com(crs, r, r̃)

a = u` mod p
a‖σp−−−−−−−→ ver(Kp, m, σp)

?
= 1

c
?
= com(crs, r, r̃)

r‖r̃←−−−−−−− σp = (u, v, ξ)

z = ` + r · s mod q
z−−−−−−−→ uz ?

= avr (mod p)

(b)

Fig. 8: The iProof Protocols for ONTAP-RSA (a) and ONTAP-ElGamal (b).

Proof. Clearly, there exists an algorithm simulate(Kp,m) which outputs a σp

computationally indistinguishable from the one generated by sign(Ks,m), i.e.
σp ← Hseed(m). Thanks to Th. 6, we only need to prove that the signature scheme
is unforgeable and the protocol is deniable zero-knowledge. Unforgeability is
already assumed. Efficiency and completeness of iProof are trivial. Soundness
and deniable zero-knowledge properties of iProof are proven by Th. 8 and 9. ut

6.2 ONTAP with Generic ElGamal Signature

Definition 13 (Generic ElGamal). A generic ElGamal signature scheme works
in a group G with a generator g ∈ G with order q. The private key is Ks = x ∈u

Zq and the corresponding public key is Kp = y = gx.
The signature of a message m consists of the tuple σ = (u, v, ξ, s)← sign(Ks,m).

This tuple is split in two parts: a part σp = (u, v, ξ) which can be perfectly sim-
ulated without Ks and a part σs = s.

There exists a verification algorithm verify(Kp,m, σp, σs) which outputs 1 if
us = v ∧ ver(Kp,m, σp) = 1 and 0 otherwise for some function ver.

ElGamal [21] (with a group of prime order), Schnorr [42,43], DSA [19,18], and
ECDSA [20] signatures all meet the generic ElGamal requirements. Clearly, all
of them respect the parameter and key generation. We give briefly four examples:

– The plain ElGamal signature is u = gk mod p for some random k, v =
gh(m)y−u mod p, ξ = ∅, s = h(m)−xσr

k (mod q) and the ver algorithm con-

sists in checking v
?= gh(m)y−u (mod p).

– The Schnorr signature is u = g, v = gs mod p, ξ = h(gk mod p‖m), s = k +
xξ mod q and the ver algorithm consists in checking h(vy−ξ mod p‖m) ?= ξ

– The DSA signature is u = gk for some random k, v = gh(m)yu, ξ = ∅,
s = h(m)+xu

k mod q and the ver algorithm consists in checking v
?= gh(m)yu

(mod p).
– The ECDSA signature works over an elliptic curve with prime order n, with

generator G, and with keys Ks = d ∈u [1, n − 1] and KP = Q = dG.
The ECDSA signature is u = (ux, uy) = kG, v = h(m)G + ūxQ, ξ = ∅, s =
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h(m)+dūx

k mod n and the ver algorithm consists in checking v
?= h(m)G+ūxQ

(mod n). (Here we use additive notations and the ux 7→ x̄x mapping is
defined in [20]).

In order to build a non-transferable signature, instead of revealing the pri-
vate part of the signature, we will prove that we know it. Clearly, we will use
a zero-knowledge proof as before. The required proof of knowledge should al-
low P to prove to V that he knows s such that us = v. Note that this is
the proof of the knowledge of the discrete logarithm. The identification proto-
col from Schnorr [42,43] is a Σ-protocol when q is prime proving exactly that.
Consequently, we applied our generic transform from Th. 9 and we obtain the
verification protocol of Fig. 8b which is deniable zero-knowledge in the CRS
model. We thus obtain several schemes: ONTAP-ElGamal, ONTAP-Schnorr,
ONTAP-DSA, ONTAP-ECDSA, and so on.

Theorem 14. Assume that the ElGamal-based signature is EF-CMA-secure and
that the com(·) is a trapdoor commitment scheme in the CRS model (resp. RO
commitment scheme). The digital signature scheme added to the signature proof
iProof of Fig. 8b forms a ONTAP scheme in the CRS model (resp. RO model).
The soundness error is 2−t.

See proof of Th. 12.

7 Conclusion

We studied the deniability notion in the case of digital signature verification. We
proposed a new primitive called ONTAP as an offline non-transferable proof for
holding a valid signature. As example, we presented an efficient signature proof
for RSA-based and ElGamal-based signatures. Our protocol offers an adequate
solution for private data authentication especially in the context of e-passports.
It is compatible with all standard signature schemes.
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