3 research outputs found

    Subject-oriented training for motor imagery brain-computer interfaces

    Get PDF
    Successful operation of motor imagery (MI)-based brain-computer interfaces (BCI) requires mutual adaptation between the human subject and the BCI. Traditional training methods, as well as more recent ones based on co-adaptation, have mainly focused on the machine-learning aspects of BCI training. This work presents a novel co-adaptive training protocol shifting the focus on subject-related performances and the optimal accommodation of the interactions between the two learning agents of the BCI loop. Preliminary results with 8 able-bodied individuals demonstrate that the proposed method has been able to bring 3 naive users into control of a MI BCI within a few runs and to improve the BCI performances of 3 experienced BCI users by an average of 0.36 bits/sec

    Integrating EEG and MEG signals to improve motor imagery classification in brain-computer interfaces

    Full text link
    We propose a fusion approach that combines features from simultaneously recorded electroencephalographic (EEG) and magnetoencephalographic (MEG) signals to improve classification performances in motor imagery-based brain-computer interfaces (BCIs). We applied our approach to a group of 15 healthy subjects and found a significant classification performance enhancement as compared to standard single-modality approaches in the alpha and beta bands. Taken together, our findings demonstrate the advantage of considering multimodal approaches as complementary tools for improving the impact of non-invasive BCIs

    Towards Rehabilitation Robotics: Off-the-Shelf BCI Control of Anthropomorphic Robotic Arms

    Get PDF
    corecore