37 research outputs found

    Embeddings of 3-connected 3-regular planar graphs on surfaces of non-negative Euler characteristic

    Full text link
    Whitney's theorem states that every 3-connected planar graph is uniquely embeddable on the sphere. On the other hand, it has many inequivalent embeddings on another surface. We shall characterize structures of a 33-connected 33-regular planar graph GG embedded on the projective-plane, the torus and the Klein bottle, and give a one-to-one correspondence between inequivalent embeddings of GG on each surface and some subgraphs of the dual of GG embedded on the sphere. These results enable us to give explicit bounds for the number of inequivalent embeddings of GG on each surface, and propose effective algorithms for enumerating and counting these embeddings.Comment: 19 pages, 12 figure

    On Essential and Inessential Polygons in Embedded Graphs

    Get PDF
    AbstractIn this article, we present a number of results of the following type: A given subgraph of an embedded graph either is embedded in a disc or it has a face chain containing a non-contractible closed path. Our main application is to prove that any two faces of a 4-representative embedding are simultaneously contained in a disc bounded by a polygon. This result is used to prove the existence of ⌊(r−1)/8⌋ pairwise disjoint, pairwise homotopic non-contractible separating polygons in an r -representative orientable embedding. Our proof of this latter result is simple and mechanical

    Two Results in Drawing Graphs on Surfaces

    Get PDF
    In this work we present results on crossing-critical graphs drawn on non-planar surfaces and results on edge-hamiltonicity of graphs on the Klein bottle. We first give an infinite family of graphs that are 2-crossing-critical on the projective plane. Using this result, we construct 2-crossing-critical graphs for each non-orientable surface. Next, we use 2-amalgamations to construct 2-crossing-critical graphs for each orientable surface other than the sphere. Finally, we contribute to the pursuit of characterizing 4-connected graphs that embed on the Klein bottle and fail to be edge-hamiltonian. We show that known 4-connected counterexamples to edge-hamiltonicity on the Klein bottle are hamiltonian and their structure allows restoration of edge-hamiltonicity with only a small change

    On Hardness of the Joint Crossing Number

    Full text link
    The Joint Crossing Number problem asks for a simultaneous embedding of two disjoint graphs into one surface such that the number of edge crossings (between the two graphs) is minimized. It was introduced by Negami in 2001 in connection with diagonal flips in triangulations of surfaces, and subsequently investigated in a general form for small-genus surfaces. We prove that all of the commonly considered variants of this problem are NP-hard already in the orientable surface of genus 6, by a reduction from a special variant of the anchored crossing number problem of Cabello and Mohar

    Partitions and Coverings of Trees by Bounded-Degree Subtrees

    Full text link
    This paper addresses the following questions for a given tree TT and integer d≥2d\geq2: (1) What is the minimum number of degree-dd subtrees that partition E(T)E(T)? (2) What is the minimum number of degree-dd subtrees that cover E(T)E(T)? We answer the first question by providing an explicit formula for the minimum number of subtrees, and we describe a linear time algorithm that finds the corresponding partition. For the second question, we present a polynomial time algorithm that computes a minimum covering. We then establish a tight bound on the number of subtrees in coverings of trees with given maximum degree and pathwidth. Our results show that pathwidth is the right parameter to consider when studying coverings of trees by degree-3 subtrees. We briefly consider coverings of general graphs by connected subgraphs of bounded degree

    Characterizing 2-crossing-critical graphs

    Full text link
    It is very well-known that there are precisely two minimal non-planar graphs: K5K_5 and K3,3K_{3,3} (degree 2 vertices being irrelevant in this context). In the language of crossing numbers, these are the only 1-crossing-critical graphs: they each have crossing number at least one, and every proper subgraph has crossing number less than one. In 1987, Kochol exhibited an infinite family of 3-connected, simple 2-crossing-critical graphs. In this work, we: (i) determine all the 3-connected 2-crossing-critical graphs that contain a subdivision of the M\"obius Ladder V10V_{10}; (ii) show how to obtain all the not 3-connected 2-crossing-critical graphs from the 3-connected ones; (iii) show that there are only finitely many 3-connected 2-crossing-critical graphs not containing a subdivision of V10V_{10}; and (iv) determine all the 3-connected 2-crossing-critical graphs that do not contain a subdivision of V8V_{8}.Comment: 176 pages, 28 figure

    Book embeddings of graphs

    Get PDF
    We use a structural theorem of Robertson and Seymour to show that for every minor-closed class of graphs, other than the class of all graphs, there is a number k such that every member of the class can be embedded in a book with k pages. Book embeddings of graphs with relation to surfaces, vertex extensions, clique-sums and r-rings are combined into a single book embedding of a graph in the minor-closed class. The effects of subdividing a complete graph and a complete bipartite graph with respect to book thickness are studied. We prove that if n ≥ 3, then the book thickness of Kn is the ceiling of (n/2). We also prove that for each m and B, there exists an integer N such that for all n ≥ ‪N, the book thickness of the graph obtained from subdividing each edge of Kn exactly m times has book thickness at least B. Additionally, there are corresponding theorems for complete bipartite graphs

    Spanning trees without adjacent vertices of degree 2

    Full text link
    Albertson, Berman, Hutchinson, and Thomassen showed in 1990 that there exist highly connected graphs in which every spanning tree contains vertices of degree 2. Using a result of Alon and Wormald, we show that there exists a natural number dd such that every graph of minimum degree at least dd contains a spanning tree without adjacent vertices of degree 2. Moreover, we prove that every graph with minimum degree at least 3 has a spanning tree without three consecutive vertices of degree 2
    corecore