754 research outputs found

    Volumetric Untrimming: Precise decomposition of trimmed trivariates into tensor products

    Full text link
    3D objects, modeled using Computer Aided Geometric Design tools, are traditionally represented using a boundary representation (B-rep), and typically use spline functions to parameterize these boundary surfaces. However, recent development in physical analysis, in isogeometric analysis (IGA) in specific, necessitates a volumetric parametrization of the interior of the object. IGA is performed directly by integrating over the spline spaces of the volumetric spline representation of the object. Typically, tensor-product B-spline trivariates are used to parameterize the volumetric domain. A general 3D object, that can be modeled in contemporary B-rep CAD tools, is typically represented using trimmed B-spline surfaces. In order to capture the generality of the contemporary B-rep modeling space, while supporting IGA needs, Massarwi and Elber (2016) proposed the use of trimmed trivariates volumetric elements. However, the use of trimmed geometry makes the integration process more difficult since integration over trimmed B-spline basis functions is a highly challenging task. In this work, we propose an algorithm that precisely decomposes a trimmed B-spline trivariate into a set of (singular only on the boundary) tensor-product B-spline trivariates, that can be utilized to simplify the integration process in IGA. The trimmed B-spline trivariate is first subdivided into a set of trimmed B\'ezier trivariates, at all its internal knots. Then, each trimmed B\'ezier trivariate, is decomposed into a set of mutually exclusive tensor-product B-spline trivariates, that precisely cover the entire trimmed domain. This process, denoted untrimming, can be performed in either the Euclidean space or the parametric space of the trivariate. We present examples on complex trimmed trivariates' based geometry, and we demonstrate the effectiveness of the method by applying IGA over the (untrimmed) results.Comment: 18 pages, 32 figures. Contribution accepted in International Conference on Geometric Modeling and Processing (GMP 2019

    A generalization of Voronoi's reduction theory and its application

    Full text link
    We consider Voronoi's reduction theory of positive definite quadratic forms which is based on Delone subdivision. We extend it to forms and Delone subdivisions having a prescribed symmetry group. Even more general, the theory is developed for forms which are restricted to a linear subspace in the space of quadratic forms. We apply the new theory to complete the classification of totally real thin algebraic number fields which was recently initiated by Bayer-Fluckiger and Nebe. Moreover, we apply it to construct new best known sphere coverings in dimensions 9,..., 15.Comment: 31 pages, 2 figures, 2 tables, (v4) minor changes, to appear in Duke Math.

    The number of Reidemeister Moves Needed for Unknotting

    Full text link
    There is a positive constant c1c_1 such that for any diagram DD representing the unknot, there is a sequence of at most 2c1n2^{c_1 n} Reidemeister moves that will convert it to a trivial knot diagram, nn is the number of crossings in DD. A similar result holds for elementary moves on a polygonal knot KK embedded in the 1-skeleton of the interior of a compact, orientable, triangulated PLPL 3-manifold MM. There is a positive constant c2c_2 such that for each t≥1t \geq 1, if MM consists of tt tetrahedra, and KK is unknotted, then there is a sequence of at most 2c2t2^{c_2 t} elementary moves in MM which transforms KK to a triangle contained inside one tetrahedron of MM. We obtain explicit values for c1c_1 and c2c_2.Comment: 48 pages, 14 figure

    DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications

    Full text link
    Convolutional Neural Networks (CNNs) are a cornerstone of the Deep Learning toolbox and have led to many breakthroughs in Artificial Intelligence. These networks have mostly been developed for regular Euclidean domains such as those supporting images, audio, or video. Because of their success, CNN-based methods are becoming increasingly popular in Cosmology. Cosmological data often comes as spherical maps, which make the use of the traditional CNNs more complicated. The commonly used pixelization scheme for spherical maps is the Hierarchical Equal Area isoLatitude Pixelisation (HEALPix). We present a spherical CNN for analysis of full and partial HEALPix maps, which we call DeepSphere. The spherical CNN is constructed by representing the sphere as a graph. Graphs are versatile data structures that can act as a discrete representation of a continuous manifold. Using the graph-based representation, we define many of the standard CNN operations, such as convolution and pooling. With filters restricted to being radial, our convolutions are equivariant to rotation on the sphere, and DeepSphere can be made invariant or equivariant to rotation. This way, DeepSphere is a special case of a graph CNN, tailored to the HEALPix sampling of the sphere. This approach is computationally more efficient than using spherical harmonics to perform convolutions. We demonstrate the method on a classification problem of weak lensing mass maps from two cosmological models and compare the performance of the CNN with that of two baseline classifiers. The results show that the performance of DeepSphere is always superior or equal to both of these baselines. For high noise levels and for data covering only a smaller fraction of the sphere, DeepSphere achieves typically 10% better classification accuracy than those baselines. Finally, we show how learned filters can be visualized to introspect the neural network.Comment: arXiv admin note: text overlap with arXiv:astro-ph/0409513 by other author

    Tropical cycles and Chow polytopes

    Full text link
    The Chow polytope of an algebraic cycle in a torus depends only on its tropicalisation. Generalising this, we associate a Chow polytope to any abstract tropical variety in a tropicalised toric variety. Several significant polyhedra associated to tropical varieties are special cases of our Chow polytope. The Chow polytope of a tropical variety XX is given by a simple combinatorial construction: its normal subdivision is the Minkowski sum of XX and a reflected skeleton of the fan of the ambient toric variety.Comment: 22 pp, 3 figs. Added discussion of arbitrary ambient toric varieties; several improvements suggested by Eric Katz; some rearrangemen
    • …
    corecore