95 research outputs found

    Decentralized, Noncooperative Multirobot Path Planning with Sample-BasedPlanners

    Get PDF
    In this thesis, the viability of decentralized, noncooperative multi-robot path planning algorithms is tested. Three algorithms based on the Batch Informed Trees (BIT*) algorithm are presented. The first of these algorithms combines Optimal Reciprocal Collision Avoidance (ORCA) with BIT*. The second of these algorithms uses BIT* to create a path which the robots then follow using an artificial potential field (APF) method. The final algorithm is a version of BIT* that supports replanning. While none of these algorithms take advantage of sharing information between the robots, the algorithms are able to guide the robots to their desired goals, with the algorithm that combines ORCA and BIT* having the robots successfully navigate to their goals over 93% for multiple environments with teams of two to eight robots

    A Parallel Distributed Strategy for Arraying a Scattered Robot Swarm

    Full text link
    We consider the problem of organizing a scattered group of nn robots in two-dimensional space, with geometric maximum distance DD between robots. The communication graph of the swarm is connected, but there is no central authority for organizing it. We want to arrange them into a sorted and equally-spaced array between the robots with lowest and highest label, while maintaining a connected communication network. In this paper, we describe a distributed method to accomplish these goals, without using central control, while also keeping time, travel distance and communication cost at a minimum. We proceed in a number of stages (leader election, initial path construction, subtree contraction, geometric straightening, and distributed sorting), none of which requires a central authority, but still accomplishes best possible parallelization. The overall arraying is performed in O(n)O(n) time, O(n2)O(n^2) individual messages, and O(nD)O(nD) travel distance. Implementation of the sorting and navigation use communication messages of fixed size, and are a practical solution for large populations of low-cost robots

    Fast-dRRT*: Efficient Multi-Robot Motion Planning for Automated Industrial Manufacturing

    Full text link
    We present Fast-dRRT*, a sampling-based multi-robot planner, for real-time industrial automation scenarios. Fast-dRRT* builds upon the discrete rapidly-exploring random tree (dRRT*) planner, and extends dRRT* by using pre-computed swept volumes for efficient collision detection, deadlock avoidance for partial multi-robot problems, and a simplified rewiring strategy. We evaluate Fast-dRRT* on five challenging multi-robot scenarios using two to four industrial robot arms from various manufacturers. The scenarios comprise situations involving deadlocks, narrow passages, and close proximity tasks. The results are compared against dRRT*, and show Fast-dRRT* to outperform dRRT* by up to 94% in terms of finding solutions within given time limits, while only sacrificing up to 35% on initial solution cost. Furthermore, Fast-dRRT* demonstrates resilience against noise in target configurations, and is able to solve challenging welding, and pick and place tasks with reduced computational time. This makes Fast-dRRT* a promising option for real-time motion planning in industrial automation.Comment: 7 pages, 6 figures, submitted to ICRA 202
    • …
    corecore