
DECENTRALIZED, NONCOOPERATIVE MULTIROBOT PATH PLANNING

WITH SAMPLE-BASED PLANNERS

A Thesis

presented to

the Faculty of California Polytechnic State University,

San Luis Obispo

In Partial Fulfillment

of the Requirements for the Degree

Master of Science in Electrical Engineering

by

William Le

2March 2020

c© 2020

William Le

ALL RIGHTS RESERVED

ii

COMMITTEE MEMBERSHIP

TITLE: Decentralized, Noncooperative Multirobot

Path Planning with Sample-Based Plan-

ners

AUTHOR: William Le

DATE SUBMITTED: March 2020

COMMITTEE CHAIR: Xiao-Hua Yu, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Andrew Danowitz, Ph.D.

Professor of Electrical Engineering

COMMITTEE MEMBER: Joseph Callenes-Sloan, Ph.D.

Professor of Electrical Engineering

iii

ABSTRACT

Decentralized, Noncooperative Multirobot Path Planning with Sample-Based

Planners

William Le

In this thesis, the viability of decentralized, noncooperative multi-robot path planning

algorithms is tested. Three algorithms based on the Batch Informed Trees (BIT*)

algorithm are presented. The first of these algorithms combines Optimal Reciprocal

Collision Avoidance (ORCA) with BIT*. The second of these algorithms uses BIT*

to create a path which the robots then follow using an artificial potential field (APF)

method. The final algorithm is a version of BIT* that supports replanning. While

none of these algorithms take advantage of sharing information between the robots,

the algorithms are able to guide the robots to their desired goals, with the algorithm

that combines ORCA and BIT* having the robots successfully navigate to their goals

over 93% for multiple environments with teams of two to eight robots.

iv

ACKNOWLEDGMENTS

Thanks to:

• Dr. Xiao-Hua (Helen) Yu

• Dr. Andrew Danowitz

• Dr. Joseph Callenes-Sloan

• Ji Jin

• Genevieve Duchesneau

• Cal Poly Robotics

v

TABLE OF CONTENTS

Page

LIST OF TABLES . ix

LIST OF FIGURES . x

CHAPTER

1 Introduction . 1

2 Literature Review . 4

2.1 Centralized Multi Robot Planning . 4

2.1.1 M* . 4

2.1.2 Rapidly-exploring Random Graphs (RRG) 6

2.1.3 ORCA-RRT* . 7

2.2 Decentralized Multi Robot Planning 8

2.2.1 DMA-RRT . 8

2.3 Dynamic Environment Planning . 10

2.3.1 Path-Guided APF-SR . 10

2.3.2 Dynamic APF . 11

3 Background Information . 13

3.1 Path Planning Algorithms . 13

3.1.1 Graph-Based Planning . 13

3.1.1.1 A* . 13

3.1.2 Sample-Based Planning . 15

3.1.2.1 Rapidly-Exploring Random Trees (RRT) 15

3.1.3 Batch Informed Trees (BIT*) 17

3.2 Reactive Algorithms . 21

vi

3.2.1 Artificial Potential Fields (APF) 21

3.2.2 Reciprocal Collision Avoidance 22

4 Approach . 25

4.1 Simulation Workflow . 25

4.2 Robot Workflow . 28

4.2.1 Implementations of Robot Workflow 29

4.2.1.1 Path Planning . 30

4.2.1.2 Trajectory Generation 31

4.2.1.3 Replanning . 32

4.2.1.4 Optimal Reciprocal Collision Avoidance (ORCA) . . 32

4.2.1.5 Path-guided Artificial Potential Fields (APF) 33

5 Testing . 36

5.1 Environments . 36

6 Results . 43

6.1 Metrics . 43

6.1.1 Efficiency Metrics . 43

6.1.2 Success Metrics . 44

6.1.3 Failure Metrics . 44

6.1.4 Computational Metrics . 44

6.2 APF-based Approach . 45

6.2.1 Completeness . 45

6.2.2 Efficiency . 45

6.2.3 Cost . 47

6.2.4 Mechanisms of Failure . 48

6.2.5 Summary of Results for APF-based Approach 49

vii

6.3 ORCA-based Approach . 53

6.3.1 Completeness . 53

6.3.2 Efficiency . 54

6.3.3 Cost . 54

6.3.4 Mechanisms of Failure . 55

6.4 Replanning Approach . 58

6.4.1 Completeness . 58

6.4.2 Efficiency . 58

6.4.3 Cost . 61

6.4.4 Mechanisms of Failure . 62

6.4.5 Additional Replanning Notes 63

6.4.6 Summary of Replanning Approach Results 64

6.5 Comparison to Single Robot Case . 65

6.6 Comparison of Algorithms . 66

6.7 Comparison to Reactive Multi-robot Path Planning 66

7 Conclusion . 68

7.1 Future Works . 69

BIBLIOGRAPHY . 71

APPENDICES

.1 Comparison to Single Robot Planning APF 74

.2 Comparison to Single Robot Planning ORCA 74

.3 Comparison to Single Robot Planning 74

.4 Replanning Metrics . 77

viii

LIST OF TABLES

Table Page

4.1 This table lists some of the key parameters for the simulation setup.
These include robot dimensions and abilities and environmental con-
straints. 27

4.2 These are the parameters used for BIT*. These parameters were
selected primarily based on generating a path quickly. 31

4.3 These are the parameters used for replanning the path of the robot.
These conditions are constrained that that for the initial plan in
order to allow for the robot to plan and move quickly out of the path
of the other robots or obstacles. 32

4.4 These are the parameters chosen for ORCA. They were selected in
order for the robots to avoid each other with a minimal degree of
separation. 33

4.5 This table has the weights for the APF algorithm. They were decided
upon since they lead to the best chance of robots avoiding each other. 35

6.1 Summary of metrics used to evaluate the multi-robot approaches . 45

6.2 This table summarizes the strengths and weaknesses of the approaches
experimented with in this thesis. Overall, the ORCA-based approach
outperformed the others. 66

.1 Metrics for All Robots using BIT*-APF 84

.2 Metrics for Successful Robots using BIT*-APF 84

.3 Metrics for All Robots Using BIT*-ORCA 85

.4 Metrics for Successful Robots Using BIT*-ORCA 85

.5 Metrics for All Robots Using BIT*-Replanning 86

.6 Metrics for Successful Robots Using BIT*-Replanning 86

ix

LIST OF FIGURES

Figure Page

2.1 These images illustrate the concept of subdimensional expansion.
The dimensionality for the problem involving each robot is repre-
sented as a line. The squares and cubes represent the problem when
the robots get into a near collision state. For example, the square
of 1, 2 is an instance of where robots 1 and 2 are in a near collision
which represents the problem going from a one dimensional problem
to a two dimensional one[21]. 5

2.2 The image on the left shows a rapidly-exploring random graph. The
graph is created from RRTs from each starting configuration. The
graph is colored to reflect where each tree grew from. The image
on the right shows paths generated for the robots by traversing the
graph [10]. 7

2.3 An example of the token passing system in use for DMA-RRT. In
this scenario, agent 1 is given the token to begin with and plans a
path to its goal. Then, agent 4 gains the token since it is the next
best potential path and it plans its path to goal. After that, agent 2
is the agent that has improved its path the most, so it receives the
token [4]. 9

2.4 The image on the left shows the path generated by a sample-based
planning algorithm in green and the path traversed by the robot
in green. The image on the right illustrates the calculation of the
attractive gradients for path-guided APF [3]. 11

2.5 This figure shows the various cases a UAV would see moving in an
environment with dynamic obstacles and dynamic goal locations [2] 12

3.1 This image shows an RRT being expanded into an empty configura-
tion space. The algorithm has a tendency to expand into the least
searched spaces [15] . 16

3.2 Ellipsoid of informed subproblem. The ellipsoid is used to constrain
the area used to generate new samples for RRT*. This is done since
it can be proven that the ellipsoid will allow a path to be found while
also continually bettering the solution path. This constraint helps
the algorithm find a path to the goal significantly faster [5]. 18

x

3.3 This image shows the growth of a batch informed tree. The tree
initially searches within a smaller subproblem that is expanded until
a path to the goal is found. After that, the subproblem is resampled
and the path is improved continually[6]. 21

3.4 This image shows an example of a potential gradient generated for
the artificial potential field algorithm. The robot is starting in the
rightmost corner and attempting to travel to the leftmost corner [1]. 22

3.5 This image shows an example of a velocity obstacle and the ORCA
planes generated from the velocity obstacle This half plane repre-
sents the set of velocities the robot can take to avoid a collision with
the other robot. Half of the minimum velocity needed to ensure a
collision free velocity is used since it is assumed the other robot will
do the same. As a result, the robots share half of the responsibility
to avoid each other, hence the reciprocal nature of the algorithm[20]. 23

3.6 This image shows how the optimal safe velocity is determined for a
robot. The optimal safe velocity is determined by using the ORCA
plane intersections [20]. From this formulation, all the robots are
guaranteed to have collision-free velocities. As a result, all robots
should be able to follow collision-free trajectories to their goal con-
figurations without the need for explicit communication. But, as this
is a purely reactive algorithm, robots can get into deadlock situations
in dense environments. 24

4.1 This figure represents the general workflow for robots running in the
simulation. 28

5.1 Empty Environment has no obstacles. The red dots indicate the
start and goal points. 37

5.2 Two Corridors Environment has three obstacles and two narrow cor-
ridors through to the other side of the environment. 38

5.3 Double Bug Trap Environment has robots in two room-like struc-
tures. The robots will have to travel from one room to the other
room. 39

5.4 Office Environment features obstacles placed in an office-like setting. 40

5.5 Random Environments are environments with randomly generated
obstacles. 41

xi

6.1 Success Rate for APF approach is shown. The double bug trap and
empty environments had the highest success rate, while the random2
and two corridor environments had the lowest. 46

6.2 Average distance traveled by robots using the APF-based approach
is shown on the left. The average distanced traveled by successful
robots using the APF-based approach is shown on the right. The
average distance traveled in the two corridors environment jumps
from 2000 units to 3500 units once the number of robots in the
environment increases beyond four robots. When controlling for only
successful robots, the average distance traveled remains mostly the
same for all variations in number of robots. 47

6.3 Average runtime for robots using the APF-based approach is shown
on the left. The average runtime for successful robots is shown on
the right. These plots show that the robots took considerably longer
to get to their goals in the double bug trap and office environments. 48

6.4 The collision rate for trials with robots using the APF-based ap-
proach is shown on the left. The timeout rate is shown on the right.
Collisions were only common in the random2 environment. Timeouts
were very common in the two corridors environment. 49

6.5 The yellow dotted robot has been trapped in a local minimum. This
is likely due to the path planner planning a route through a gap that
is too small. 51

6.6 The robots on the right are unable to pass each other. Through rare,
it is possible for the robots to make it through the pass. 52

6.7 Success rate for ORCA-based approach was at least 93% for all ex-
periments. 53

6.8 The plots for average distance traveled for robots using ORCA-based
approach and successful average distance traveled look virtually iden-
tical. The distance traveled did not increase with an increase in
robots for all environments. 54

6.9 Average runtime for robots using ORCA-based approach shows sim-
ilar behavior to the average runtime for robots using the APF-based
approach with the double but trap and office environments having
longer average runtimes than the other environments. 55

6.10 The ORCA-based approach rarely resulted in either a collision or
timeout . 55

xii

6.11 The solid blue robot fails to reach its goal due to being trapped in a
local minimum . 56

6.12 It is possible for the ORCA approach to reach a deadlock. This is
likely due to the planner. 57

6.13 Success rate of robots using the replanning approach decreases in
all environments, more so in the double bug trap, office, and two
corridors environments. 59

6.14 Plots for average distance traveled for robots using replanning ap-
proach that for most environments the distance traveled was about
the same for all variations in number of robots. But, in the dou-
ble bug trap environment, the average distance traveled decreases
rapidly since most robots end up in a deadlock. 60

6.15 Average runtime for robots using the replanning approach in general
increases as the number of robots increase for all environments. The
average runtime for double bug trap and office environments in the
plot on the left is slightly misleading since many robots got dead-
locked and were unable to record a runtime. As a result, the average
runtime decreased in those environments when the number of robots
increased. 62

6.16 The replanning approach would result in some collisions, but most
trials ended in timeouts, especially in the double bug trap, office,
and two corridors environments. 63

xiii

Chapter 1

INTRODUCTION

This thesis will focus on the problem of multi-robot path planning. Multi-robot path

planning consists of determining paths for robots in a team to maneuver to their goal

locations to accomplish their higher level task in a way such that they do not collide

with each other or any element in the environment.

Multi-robot path planning algorithms can be grouped into two subgroups: centralized

algorithms and decentralized algorithms. Centralized algorithms use one agent, which

can be an outside computer or team leader robot, to determine the paths for all the

robots in the team [16]. This method results in plans that are more optimized in

terms of cost to travel, but they have the drawback of being more computationally

intensive. Additionally, if the problem has more robots, the dimensionality of the

centralized planning problem increases exponentially, which leads to the algorithm

being unable to solve the problem in a reasonable amount of time. Decentralized

algorithms allow for each robot in the multiagent team to plan their own paths and

then rely on communication between robots to have them coordinate with each other

in order to avoid each other [21].

This approach results in quicker plan generation with the drawback of less optimized

paths. Additionally, another consideration for multi robot planning algorithms is

if the robots are cooperative or noncooperative [18]. A cooperative algorithm has

the team of robots sharing more information about themselves such as their position

and their planned path. In a noncooperative algorithm, less information is shared,

1

as robots will only know the qualities of the other robots through their individual

sensing capabilities.

Another consideration is for planning in continuous space where graph-based planning

methods or sampling-based methods can be used. Graph-based planning methods are

more capable of finding optimal solutions, but the space must be rigidly discretized

in order for the graph search algorithms to be applied [16]. Sampling-based planning

methods can better handle continuous space since they rely on randomly sampling

the space for valid waypoints for the path [16].

In order to efficiently solve a multi robot path planning problem, the algorithm se-

lected must be fast in order for the robots avoid collisions with each other. Addi-

tionally, for problems with more robots, slower techniques may become infeasible.

Therefore, this thesis will use a decentralized planning method with each robot plan-

ning their paths with a sample-based path planning method. While this methodology

would result in suboptimal plan, the multi robot path planning problem is known to

be a PSPACE-hard problem, so feasible solutions will be good enough at best [8].

There has been some research into using a decentralized sampling-based algorithm.

One such algorithm is known as DMA-RRT or Decentralized Multi-Agent Rapidly-

exploring Random Tree which uses a token passing system to have robots communi-

cate and improve their plans with the other robots in the team [4]. Another approach

uses a reactive technique and is known as ORCA-RRT* [9]. This technique com-

bines a reactive technique ORCA or Optimal Reciporcal Collision Avoidance with a

sampling-based algorithm, RRT* which is an asymtopically optimal version of RRT.

RRT* is used as the basis for planning all the paths for all the robots. The algo-

rithm then amends the paths to make them collision-free by using ORCA to simulate

collision-free velocities.

2

The approach taken in this thesis is similar to the ORCA-RRT* approach in that

it uses a sampling-based planner in conjunction with ORCA, but it has each robot

planning their own paths. The sample-based planning algorithm used will be Batch

Informed Trees or BIT* since it employs incremental search techniques and can be

run in an anytime fashion [6]. Additionally, other variations of the technique are

tested such as using artificial potential fields to allow the robots to react and avoid

the other robots and replanning the robot’s path.

The contributions of this thesis in the form of the various approaches used for this

thesis. First is the use of BIT* with the combination of reactive techniques. Even

though the combination of using a sample-based planning (SBP) algorithm with a re-

active technique is not a new idea, BIT* has not been used for this purpose before [9].

Second is the decentralized formalization of ORCA with an SBP. Previous combina-

tions of sample-based planning and ORCA used a centralized formalization [9]. Third

is the application of the combinations of SBPs with APF to be applied to a multi-

robot setting instead of a dynamic setting. Fourth is the application of replanning

with multi-robot problems. Fifth is a version of BIT* that supports replanning.

Following this introduction is Chapter 2 which goes into more detail about other

algorithms used for multi-robot path planning problem. Chapter 3 introduces and

develops the basis for the approach taken by this thesis by discussion single query

sample-based planning and reactive planning algorithms. Chapter 4 describes the

approach in depth and presents the results of taking the approach in various simulated

environments. Chapter 5 states the conclusions from this thesis and potential future

work.

3

Chapter 2

LITERATURE REVIEW

The problem of multi robot path planning has been addressed by many other tech-

niques. In this section, centralized approaches, prioritized search, and reactive meth-

ods are discussed and evaluated. Some of these methods are not explicitly for multi

robot path planning, but have been shown to work in environments with moving ob-

stacles since multi robot path planning can be seen as a similar problem to planning

in dynamic environments.

2.1 Centralized Multi Robot Planning

Centralized multi-robot planning algorithms rely on a centralized computer to deter-

mine the paths for all robots in the configuration space. This centralized computer

can be a source outside of the robots in the space or a leader robot in the space.

2.1.1 M*

M* is a multi robot path planning algorithm that is based on what the algorithm

refers to as subdimensional expansion [21]. Multi robot planning can be considered

as a higher dimensional planning problem if each robot is considered as a joint.

For example, a planning problem for two robots in two dimensions can be considered

as a four dimensional problem since the configurations for the problem includes the

positions for both robots. So, the dimensionality of a multi robot planning problem

grows exponentially which makes the problem very difficult to solve. Subdimensional

4

Figure 2.1: These images illustrate the concept of subdimensional expan-
sion. The dimensionality for the problem involving each robot is repre-
sented as a line. The squares and cubes represent the problem when the
robots get into a near collision state. For example, the square of 1, 2 is an
instance of where robots 1 and 2 are in a near collision which represents
the problem going from a one dimensional problem to a two dimensional
one[21].

expansion mitigates this problem by only expanding the dimensionality of the search

space when collisions between robots are found to occur[21].

The basic workflow of solving a planning problem with subdimensional expansion is

to allow for plans to be generated for each individual robot until a robots come into

close contact with each other. When this occurs, a subproblem in the area of conflict

with a higher dimensional search space is generated as illustrated in Figure 2.1.

This selective expansion of the search space minimizes the dimensionality of the search

space which makes eases the difficulty of the problem and increases the chances of

generating a feasible solution.

M* implements this strategy by using the A* search algorithm to plan paths for the

individual robots and tracking where collisions would occur [21]. In those collision

areas, the algorithm allows the robots to deviate from their plans by resolving the

conflict by solving a higher dimensional path planning problem. Additionally, there

has been an extension of the subdimensional expansion method for sample-based

5

planning methods like rapidly-exploring random trees and probabilistic roadmaps in

place of A* [22].

In general, the subdimensional expansion method has been found to find minimal

cost solutions for multi robot planning problems, but the method has been found to

struggle with finding solutions with problems that have more than around ten robots

within twelve minutes.

2.1.2 Rapidly-exploring Random Graphs (RRG)

The rapidly-exploring random graph, RRG, algorithm combines ideas from RRT,

PRM or probabilistic road maps, and prioritized planning to solve the multi robot

path planning problem [10] [12]. The algorithm has an exploration and an exploitation

stage. In the exploration stage, an RRT is grown from all the starting configurations

for the agents, then the individual RRTs are joined when they grow into areas in

proximity of the other trees. After a stopping criterion is reached, the resulting

roadmap of the space is finalized and paths are produced for each robot. These paths

are generated are in a prioritized fashion where each robot is given an individual

path. This plan has taken the other generated paths into account during its planning

phase. This process is show in Figure 2.2

This method was not tested with more than four robots, so it is not stated how well

this algorithm would scale. But, it is likely to face similar problems to those found

with the subdimensional expansion based algorithms since it has all agents in the

system using the same roadmap which could result in difficult to resolve deadlocks.

6

Figure 2.2: The image on the left shows a rapidly-exploring random graph.
The graph is created from RRTs from each starting configuration. The
graph is colored to reflect where each tree grew from. The image on the
right shows paths generated for the robots by traversing the graph [10].

2.1.3 ORCA-RRT*

ORCA-RRT* uses a multi robot variant of RRT* to generate paths for all the robots

in the system [9]. The multi robot variant of RRT* treats each robot in the system

as a joint and finds a path in the higher dimensional search space that connects all

the initial positions of the robots to their goal positions. Individual paths are drawn

from this solution and converted into trajectories for each robot. These trajectories

are input into the ORCA algorithm to generate a safe trajectory for each robot up

to a certain number of timesteps to avoid generating deadlocks between robots. The

technique results in a high success rate of all robots in the team finding feasible,

near-optimal trajectories in a relatively quick fashion.

7

2.2 Decentralized Multi Robot Planning

Decentralized multi-robot planning algorithms have the multiple robots plan paths

in the configuration space. They do not rely on a single computer to determine all

the paths for the robots in the space, the robots themselves are capable of doing that

themselves. After planning their paths, the robots must be able to communicate their

intentions in order to avoid collisions with the other robots to allow them to adjust

their paths appropriately.

2.2.1 DMA-RRT

Decentralized Multi-agent RRT is a multirobot planning algorithm based on CL-RRT

or closed-loop RRT and a merit-based token system [4]. CL-RRT is a variant of RRT

that forward simulates the motion of the robot using a dynamic model of the robot

in order to generate feasible trajectories. The merit-based token system consists of

the token passing algorithm and waypoint passing.

Every robot in the team plans their own paths with CL-RRT and maintain the search

tree they used to generate their individual paths. On initialization, a robot is ran-

domly assigned a token which indicates it has planning priority. This robot broadcasts

the waypoints to its path to all the other robots. The other robots take the waypoints

and simulate the path of the token owning robot and amend their internal map of

the environment to account for that path. Each robot is continually improving their

paths by expanding their internal search tree.

The robots that do not own the token bid submit a bid for the token with the value

equal to how much they have improved their paths. The token owning robot listens

8

Figure 2.3: An example of the token passing system in use for DMA-RRT.
In this scenario, agent 1 is given the token to begin with and plans a path
to its goal. Then, agent 4 gains the token since it is the next best potential
path and it plans its path to goal. After that, agent 2 is the agent that
has improved its path the most, so it receives the token [4].

to all the bids and relinquishes the token to the robot that has improved its path the

most. This overall process repeats until all robots reach their goal configurations.

This take on prioritized planning rewards the robots that improve their paths the

most in order to attempt to have all robots reach their goal configurations as soon as

possible. The token passing process is illustrated in Figure 2.3.

For this algorithm’s evaluation, the metric used was number of goals reached by the

agents within a certain timespan. The merit-based token method was shown to have

improved the rate of goals being reached by 20% when compared to a round robin

token passing method since by giving priority to the robots that have improved their

path the overall distance the robots must travel is reduced.

This algorithm mostly demonstrates the usage of sample-based planning in a real

world multi robot implementation. One key issue with the algorithm is that it requires

over air communication which can sometimes be unreliable.

9

2.3 Dynamic Environment Planning

In this section, planning algorithms for dynamic environments are explored. Dynamic

environments present a difficult problem for planners since the paths they generate

will have to be altered in order to account for changes in the environment. The

approaches below mitigate that problem by using gradient-based methods to adapt

quickly.

2.3.1 Path-Guided APF-SR

Path-guided APF-SR is dynamic path planning method that is capable of navigating

complex environments with dynamic obstacles [3]. It is a combination of three ideas:

sample-based path planning, artificial potential fields, and stochastic reachability sets.

The algorithm uses a sample-based path planner to construct a path in the initial

environment. Stochastic reachability sets for each kind of dynamic obstacle are pre-

calculated and are used to define the probabilities of where the dynamic obstacles will

be moving to. These sets are calculated based on a dynamic model of the obstacles.

From there, an artificial potential field technique is used to guide the robot towards

the goal orientation.

This technique varies from the usual technique of having a goal and obstacle gradients

by adding attractive gradients to the next waypoint in the path and to the line between

the last waypoint and the next waypoint. The stochastic reachability set is used to

determine the obstacle gradient for the dynamic obstacles. While this method has

been shown to be very successful in the complex environment it is tested in, it has not

been applied to multi agent path planning, but it seems promising since it is capable

of handling many obstacles. A potential drawback of the algorithm is that it relies on

10

Figure 2.4: The image on the left shows the path generated by a sample-
based planning algorithm in green and the path traversed by the robot in
green. The image on the right illustrates the calculation of the attractive
gradients for path-guided APF [3].

knowing the dynamics of the dynamic obstacles in the environment. Figure 2.4 shows

the a robot traversing an environment with path-guided APF-SR and an explanation

of how the artificial potential field algorithm works.

2.3.2 Dynamic APF

This algorithm aims to have an unmanned aerial vehicle, or UAV, be capable of

navigating a dynamic environment with a moving goal [2]. In order to accomplish

this goal, the algorithm amends the classical formulation of the APF algorithm to

handle the dynamic obstacles and the moving goal.

In order to handle the moving goal, the attractive potential for the drone is the

weighted square of UAV’s distance to the goal. The repulsive potential from obsta-

cles to the UAV are defined with a common formulation for the repulsive potential.

Finally, there is a coordination force that pushes the drone in the forward direction

11

Figure 2.5: This figure shows the various cases a UAV would see moving
in an environment with dynamic obstacles and dynamic goal locations [2]

and to the right. The magnitude of this force is proportional to the distance to the

goal and the total repulsive magnitude. This is shown in Figure 2.5

This algorithm is shown to significantly improve the UAV’s ability to navigate the

dynamic environment. But, it has not been tested in multirobot systems or in envi-

ronments with static obstacles in addition to dynamic ones.

12

Chapter 3

BACKGROUND INFORMATION

In this chapter, the basis for the approaches used in this thesis is discussed. First, path

planning algorithms are observed and evaluated in order to determine the method

used to plan the initial path for the robots. Afterward, reactive algorithms are ex-

amined in order to list the ways others have dealt with dynamic environments.

3.1 Path Planning Algorithms

In this section, algorithms that plan paths from a starting configuration to a goal

configuration in a static environment are explored. These algorithms are split into

two categories: graph-based and sample-based methods.

3.1.1 Graph-Based Planning

Graph-based planning uses graph search algorithms in order to plan a path for a

robot. These algorithms usually start by discretizing the robot’s environment into a

grid and then running a search algorithm. The resulting path is the best path taken

by the search algorithm.

3.1.1.1 A*

The A* algorithm is one of the most famous and most utilized search algorithms. It

has been applied to the path planning problem and has served as the basis for many

13

other path planning algorithms. Its widespread use can be attributed to it’s relative

efficiency and intuitiveness.

A* is a greedy, heuristic-based search algorithm that uses a cost-so-far and an esti-

mated cost-to-go in order to determine the best nodes in a graph to expand in order

to find the goal [7].

The algorithm starts by placing the node that contains the robot’s starting position

into a priority queue. While this queue contains nodes or the goal configuration has

not been reached, A* uses the lowest cost node in the queue to search. This is done by

popping the node from the top of the queue and either updating the cost of the nodes

in the queue that neighbor the lowest cost node or enqueuing neighboring nodes that

have not been enqueued previously. The adjusted nodes will then identify the lowest

cost node as their parent node.

A* executes this search by using the cost function shown in Equation 3.1. This cost

function reduces the size of the search space for the shortest path which leads to the

algorithm running faster.

f(x) = g(x) + h(x) (3.1)

The cost to get from the current node from the start is denoted as g(x). Whereas,

the cost to get from the current node to the node is denoted as h(x).

When the goal is found, the path to the starting configuration is found by backtracing

the parent nodes from the goal to the start.

A* is able to solve path planning problems for single robots in a static environments,

but it struggles in dynamic environments since the algorithm would not be able

to account for the changes to the environment. As a result, the only way for the

14

algorithm to repair the robot’s path is to recalculate the path from the start. This

issue can be alleviated with the use of incremental search techniques which efficiently

account for changes in the environment by reusing information from their previous

search to repair the path in the new environment [13].

3.1.2 Sample-Based Planning

While the previous graph-based search methods [7] found optimal solutions to path

planning problems, they have problems with providing a solution quickly especially

in larger or higher dimensional environments since the search space becomes large.

To combat this, randomized strategies are used. These randomized strategies became

known as sample-based path planning since they randomly sample the configuration

space to find a solution to their path planning problems.

There are two kinds of sample-based planning algorithms: single-query and multi-

query algorithms. Single-query planners solve one path planning problem and will

need to be completely rerun in order to solve another path planning problem in the

same configuration space. Multiple-query planners are able to solve multiple path

planning problems in the same configuration space. For this thesis, the discussion is

limited to single query planning algorithms.

3.1.2.1 Rapidly-Exploring Random Trees (RRT)

The first single query sample-based planning algorithm discussed is the rapidly-

exploring random tree or RRT. The algorithm, as shown in Algorithm , begins by

adding the starting point to the search tree. Then, the algorithm begins its search

until it finds the goal configuration.

15

Figure 3.1: This image shows an RRT being expanded into an empty
configuration space. The algorithm has a tendency to expand into the
least searched spaces [15]

The search is done by randomly sampling the configuration space. Then, the nearest

node in the tree to the random point is found. RRT will try to extend a new node

from that nearest node towards the random sample by a set step size. If the extension

from the nearest node towards the random sample results in a collision-free path, the

extended node will be added to the tree [15].

RRT works since the tree will always continually extend itself outward in all directions

and usually into the least explored of the configuration space, as shown in Figure 3.1.

As a result, the algorithm searches the space very quickly. This is an improvement

over random walks where it is possible that the search does not advance outward.

There have been many extensions to the basic algorithm such as goal sampling [19],

bidirectional search [14], and the use of kD-trees to find nearest neighbors [23]. These

extensions have greatly improved the algorithm’s performance. Also, RRT cannot

create an optimal cost path since the algorithm randomly searches the space, but there

has been an RRT-based algorithm known as RRT* that is asymptotically optimal by

using an A*-like cost function [11].

16

buildRRT(start, numberOfSamples, stepSize)

begin
tree = Tree();
tree.addNode(start);
for numberOfSamples do

xRandom = getRandomState();
xNear = getNearestNeighbor(xRandom, tree);
xNew = extendTree(xRandom, xNear, stepSize);
if xNew is valid and Edge(xNear, xNew) is collision-free then

tree.addNode(xNew) tree.addEdge(xNear, xNew)
end

end
return tree

end
Algorithm 1: buildRRT(start, numberOfSamples, stepSize)

3.1.3 Batch Informed Trees (BIT*)

The BIT* can be considered as the state of the art in sample-based path planning and

is the basis for the algorithm used in this thesis [6]. This algorithm uses the concepts

of creating batches of samples and incremental search techniques to find and improve

path planning solutions.

Additionally, the algorithm uses the concept of restricting the planning problem to

an informed set from an extension of the RRT* algorithm known as Informed-RRT*

[5]. This extension speeds up RRT* by restricting the algorithm’s search space to

a reasonable subproblem that is defined by an ellipsoid around the start and goal

configurations that is bound by the current best cost to the goal node so far and the

distance between the start and goal nodes, as shown in Figure 3.2.

BIT* starts by initializing a search tree, informed space, search radius, and priority

queues for vertices and edges. The algorithm starts off with no information of the

environment, so the informed space is initialized as the entire environment.

17

Figure 3.2: Ellipsoid of informed subproblem. The ellipsoid is used to
constrain the area used to generate new samples for RRT*. This is done
since it can be proven that the ellipsoid will allow a path to be found
while also continually bettering the solution path. This constraint helps
the algorithm find a path to the goal significantly faster [5].

The informed space is initialized as the entire environment, as it does not have more

information on the environment. The search radius is used to determine which nodes

would be considered as neighbors. The search radius is dependent on the size of the

informed space since as the informed space decreases, the density of sampled nodes

increases. So, in order to not process too many nodes, the radius decreases with the

decrease in informed space size. The vertex and edge queues can be thought of as

data structures used to contain the current state of the known map for the search

algorithm to use.

After initialization, the algorithm continues until a termination condition is reached.

The general flow for the algorithm follows as such. First, if possible, all nodes that

have been previously sampled in the environment are samples that cannot improve

the path to the goal are removed. This process is called pruning and it is an expensive

process. Pruning will only be done if the informed space has changed for efficiency.

The informed space denotes the area where new nodes can improve the cost to reach

the goal. If the cost to the goal is improved, the space will decrease in size. For

18

efficiency, pruning events will only occur if the informed space becomes smaller, oth-

erwise, there would be no point in doing so.

After pruning, the informed space is sampled a specified number of times. After that,

the vertex queue is filled with the nodes of the current search tree. This can be seen

as loading the current map that the algorithm has found.

After the vertex queue is loaded, the lowest cost vertices are popped from the queue.

If those vertices are within the informed space, the edges from those vertices are

added to the edge queue since they are worth exploring.

After the edge queue has been updated, the best edge in the queue is analyzed. First,

the edge is checked to see if it can improve the cost to the goal since that cost may

have improved since the last edge was checked.

If this was not the case, both the vertex and edge queue would be cleared since there

are no more vertices or edges that can improve the path to the goal. Otherwise, the

edge is checked to see if it is collision free and that it improves the path to the end

point of the edge.

If the edge is determined to be collision free and improves the path to the end point

of the edge, the edge is added to the search tree.

The edge adding process continues until there are no more vertices to process or there

are no more edges within the informed space to search.

The entire process continues until a defined termination criteria is reached.

19

BIT*(start, goal)

begin
Initialize tree with only the start in the tree;
Initialize the edge and vertex queues as empty queues;
Set the initial connection radius to be infinity;
while the termination condition has not been reached do

if the queues are empty then
Remove all samples that are outside of the informed subproblem;
Add samples to the space from the informed subproblem;
Add all vertices in the tree to the vertex queue;
Adjust the radius based on the current tree size and number of
samples taken;

end
while there are vertices worth exploring do

Add edges from the best vertex to new samples that can improve
the current solution to the edge queue;

Add edges from the best vertex to vertices in the tree that can
improve their current cost;

Get the best edge from the edge queue;
if the best edge is within the informed subproblem then

if after collision checking the edge, the edge still could improve
the solution then

if the edge improves the cost to the edge’s endpoint then
if the endpoint was in the tree then

Remove the old connection from the tree
end
else

Add the endpoint to the tree and remove it from the
sample set

end
Add the new edge to the tree and remove all edges that
do not improve the path to the edge endpoint from the
edge queue;

end

end

end
else

Flush both queues
end

end

end
Return the tree

end
Algorithm 2: BIT*(start, goal)

20

Figure 3.3: This image shows the growth of a batch informed tree. The
tree initially searches within a smaller subproblem that is expanded until
a path to the goal is found. After that, the subproblem is resampled and
the path is improved continually[6].

3.2 Reactive Algorithms

What is termed as reactive algorithms can be defined as planning algorithms that

update quickly to the surrounding environment. These algorithms do not use grids

or sampling to plan paths. They use gradient and optimization-based approaches

instead.

3.2.1 Artificial Potential Fields (APF)

Artificial potential field, or APF, path planning is an older path planning technique

that is based on the idea of using potential gradients to avoid obstacles while being

drawn towards the goal configuration [1]. In order to do so, the method uses an

attractive potential to lead the robot towards the goal. This potential field is super-

imposed with the repulsive potentials generated by the obstacles as shown in Figure

3.4. The robot then follows the potential gradient of the surface down towards the

global minimum in the environment, which is the goal configuration. The potential

calculation can be done very quickly since the potentials are based on the robot’s

distance from the goal and obstacles. But, the robot can easily get trapped in local

21

Figure 3.4: This image shows an example of a potential gradient generated
for the artificial potential field algorithm. The robot is starting in the
rightmost corner and attempting to travel to the leftmost corner [1].

minima. This can be avoided by using sample based algorithms to guide the robot

towards the goal and away from local minima.

3.2.2 Reciprocal Collision Avoidance

Another class of reactive algorithm is the reciprocal collision avoidance algorithms.

These algorithms are used in multi robot path planning algorithms where robots react

in similar ways to avoid each other.

One of the main reciprocal collision avoidance algorithms is ORCA [20]. This tech-

nique based on the concept of a velocity obstacle which has been used for collision

avoidance with dynamic obstacles for a long time. A velocity obstacle defines a set

of velocities that will result in a collision between the robot and the moving obstacle.

22

Figure 3.5: This image shows an example of a velocity obstacle and the
ORCA planes generated from the velocity obstacle This half plane repre-
sents the set of velocities the robot can take to avoid a collision with the
other robot. Half of the minimum velocity needed to ensure a collision
free velocity is used since it is assumed the other robot will do the same.
As a result, the robots share half of the responsibility to avoid each other,
hence the reciprocal nature of the algorithm[20].

ORCA uses velocity obstacles induced by the robots onto other robots to help them

avoid colliding with each other.

The ORCA algorithm starts by detecting the current position and velocities of all

other robots in the free space. Then, the velocity obstacle induced by another robot

is calculated in the velocity space based on the relative position and velocity of the

ego robot to the other robot. From this velocity obstacle, a half plane is found

by calculating the vector sum of the ego robots’ desired velocity and one-half the

minimum velocity needed to get out of the velocity obstacle as shown in Figure 3.5.

Once the safe velocity half planes induced from all other robots are found, a linear

programming algorithm is used to determine the safe velocity for the ego robot that

is closest to the robots’ desired velocity as shown in Figure 3.6.

23

Figure 3.6: This image shows how the optimal safe velocity is determined
for a robot. The optimal safe velocity is determined by using the ORCA
plane intersections [20]. From this formulation, all the robots are guar-
anteed to have collision-free velocities. As a result, all robots should be
able to follow collision-free trajectories to their goal configurations with-
out the need for explicit communication. But, as this is a purely reactive
algorithm, robots can get into deadlock situations in dense environments.

24

Chapter 4

APPROACH

In this chapter, the approach taken for this thesis will be described. The chapter

begins with describing the overall workflow for the simulations used to test the algo-

rithms used in this thesis. This is followed by the workflow used by the individual

robots in the simulation. An in depth look is given for the various algorithms tested

in the thesis.

4.1 Simulation Workflow

The simulation environment is implemented in Python using the PyQt5 library using

Python version 2.7. The QGraphicsView and QGraphicsScene libraries and associated

modules are used to visualize and provide functions such as collision detection.

The simulation starts by loading in an environment configuration which is defined

in an XML file. This file specifies the locations of the static obstacles for a test

environment. The test environment file also defines the location of the goals for the

environment. These locations were selected since they would serve as interesting

locations for the robots to travel to.

After setting up the test environment, the robots are placed at their starting positions.

The starting locations are selected for the set of goal locations in the environment.

The particular starting locations are randomly selected from the set of goal locations.

This was done in order to increase the chances of robots passing each other which

would stress the various algorithms that were tested.

25

The simulation runs at 20 frames per second in order to simulate real time perfor-

mance. On each time step, each robot in the simulation will determine a velocity to

use in order to traverse the environment in order to reach its assigned goal. These

velocities are determined based on a snapshot of the test environment on the previous

time step. Each robot moves in a prioritized order with the robots moving in order

according to when they were initialized. In this way, the trajectory planning for the

robots is not prioritized, but the movement for the robots is.

PyQt5’s signalling system is used in order to process events of interest such as when a

robot reaches its goal and when a robot collides with an element in the environment.

A test in the simulation will end if all robots reach their goals, a robot collides with

an obstacle, or if a time limit is reached.

The signals used are monitored by a robot watchdog module. The module tracks the

state of all robots. The states of interest are if the robot has collided or if the robot

has reached its goal. If the robot has done neither of those actions, it is assumed that

it still navigating the environment.

When a robot reaches a spot within the goal radius of the goal, the watchdog sends

a signal to simulator which records that that robot has done so and that robot will

no longer move until the completion of the test. When the simulation has marked

down that all robots have reached their goals, the simulation terminates and records

relevant test results.

Collision checking is handled by the collidingItems() function in the QGraphicsScene

module. This function returns a list of all simulation elements in the current simula-

tion scene that are overlapping with the robot. If any of those elements are a static

obstacle or another robot, the robot raises a flag indicating that it has collided with

an obstacle. The watchdog sees that flag and signals the simulation that a collision

26

Parameter Value
Robot Size 25 x 25

Robot Speed 15 units per frame, 300 units per second
Environment Size 1000 x 1000

Simulation Maximum Runtime 30 s
Goal Radius 15 units

Table 4.1: This table lists some of the key parameters for the simulation
setup. These include robot dimensions and abilities and environmental
constraints.

has occurred. The simulation will record all relevant test results and then terminate

the test.

A timer is set at the beginning of the simulation for 30 seconds. Once that timer has

expired, the simulation records all relevant results and terminates the test. This timer

exists to prevent tests from running indefinitely. Tests can run indefinitely if the path

planning module for an agent fails to find a path or if multiple robots are deadlocked

and none of those robots can progress towards their goals. The most similar paper to

this thesis used time limits of one and five seconds [9]. The reason why the time limit

for this thesis is significantly higher is because the replanning and APF extensions

take considerably longer than the ORCA extension to complete.

The simulations were run on Google Cloud Compute Engine using a virtual machine

with N1 general purpose compute engine. The N1 engine uses an Intel Haswell CPU

that runs at 2.3 GHz. The computer instance was configured to have 8 vCPUs or

equivalently 8 CPU cores.

All relevant parameters for the simulation are listed in Table 4.1.

27

Figure 4.1: This figure represents the general workflow for robots running
in the simulation.

4.2 Robot Workflow

In this section, the workflow for generating a velocity for a robot is described. As

previously stated, the algorithms used for this thesis is a decentralized algorithm,

therefore, the discussion of the approach will be limited to a single robot. The general

workflow for the agent is described in Figure 4.1.

The robot retrieves all relevant data from its environment. From that data, it will

generate an obstacle-free path to its goal and use a trajectory based on that path to

reach that goal.

It is assumed that the robot has perfect knowledge of the environment and is able

to know the location and size of all objects in the environment. To the robot, ev-

erything that is not itself is an obstacle, including other robots. The velocity of the

other robots is interpolated from the difference in position of the other robots from

28

time step to time step. This knowledge of the obstacles is fed to the path planning

module and the trajectory generation module, if necessary, of the robot. This is an

idealized simulation and an actual real world implementation would likely need robust

localization and perception systems to match this simulation.

The path planning module of the robot runs the BIT* algorithm as described in the

Background Information section. The algorithm will generate a collision-free path

and the waypoints from that path will be fed into the trajectory generator in order

to move the robot towards its goal.

4.2.1 Implementations of Robot Workflow

This section describes the three approaches used in this thesis. These methods could

be combined to test more variations, but they are only run independently to test the

merits of each method.

Before moving forward with the discussion of the approaches, it must be stated that

the most similar approach taken to the problem presented by this thesis is the ORCA-

RRT* algorithm. The main difference between the approaches taken in this thesis

and ORCA-RRT* are that this thesis uses a decentralized approach. ORCA-RRT*

creates an RRT in higher dimension space with each robot providing three dimensions

to the problem. After solving for paths for all the robots, it uses ORCA to generate

collision-free velocities for each of the robots [9]. The approaches used in this thesis

use BIT* instead of RRT* and uses a decentralized method for all the robots to plan

their paths. Each robot plans their own path individually, not in one large tree with

the other robots.

29

4.2.1.1 Path Planning

As stated previously, the path planning module of the robot uses the BIT* algorithm.

In particular, for this implementation, less samples are used than described in the

original paper. This is due to the fact that this implementation of the algorithm

is written in Python and the need to plan for multiple robots in a relatively short

amount of time. This could be improved by more accurately simulating the planning

for the robots by using multi threading and have individual threads plan for individual

robots.

Additionally, in the implementation of checking path plan collisions, a buffer zone is

added to checking for valid samples and valid edges. In the most basic implementation

for extending a connection from nodes, the connection is considered valid if a straight

line from the starting node to the desired node does not intersect with any obstacles.

For this implementation, a rectangle whose length is the distance between the nodes

with a width equal to twice the width of the robot is used to check for valid edges.

If an obstacle overlaps with the rectangle that is extended between the nodes under

test, the connection is considered invalid. This technique ensures a safe area that the

robot can maneuver when following the path. This extra space is especially helpful

when the reactive algorithms are used since the robot will have more space to avoid

other robots.

Additionally, the termination criteria for the algorithm is when the algorithm finds

a path that reaches the goal for the first time. This misses out on one of the main

benefits of the algorithm in that it can improve the path found for the robot with

searching the informed space more, but due to implementation issues, this is found

to be good enough.

30

Parameter Value
Number of Samples 10

Termination Condition 1 5 seconds
Termination Condition 2 Goal reached 3 times

Table 4.2: These are the parameters used for BIT*. These parameters
were selected primarily based on generating a path quickly.

Finding the goal three times or within five seconds was selected since it was difficult

to set a consistent time limit in order for a path to be found for all start and goal

combinations. All parameter values used for this BIT* implementation are shown in

Table 4.2

4.2.1.2 Trajectory Generation

The robot’s trajectory is generated by moving the robot in a straight line towards

the next waypoint in the path. The magnitude of this movement is defined by the

maximum speed of the robot. The velocity calculation starts with finding the vector

from the current position of the robot to the next waypoint from the robot’s planned

path. Then, the vector is normalized and scaled by the robot’s maximum speed,

which is noted in Table 4.1. This resulting vector is the velocity or commanded input

for the robot on the next time step. The magnitude of this vector is a floating point

value that is less than the robot’s maximum speed. The robot is capable of changing

velocity instantaneously based on these calculations.

The desired waypoint is updated when the robot comes into a close enough proximity

with the desired waypoint. The desired waypoint is then changed to the next waypoint

in the path.

31

Parameter Value
Number of Samples 1

Termination Condition 1 5 seconds
Termination Condition 2 Goal reached 1 times

Table 4.3: These are the parameters used for replanning the path of the
robot. These conditions are constrained that that for the initial plan in
order to allow for the robot to plan and move quickly out of the path of
the other robots or obstacles.

4.2.1.3 Replanning

This implementation is relatively straightforward during the test the robot will adjust

its path when necessary. This is done by rerunning the BIT* algorithm with less

samples in order to find a new path quickly. This method works out well since

BIT* is based on the idea of implicit connections in a random graph and the use of

incremental search. As a result, the search tree can be rebuilt quickly and a new path

can be found.

A replan is triggered when an obstacle is within the sum of the maximum velocities of

the robot and the obstacle and if that obstacle breaks the path the robot is following.

Replanning in general is an expensive operation and this method limits the number

of replans that the robot will perform. Another issue with replanning is that it can

result in deadlocks due to the random nature of the BIT* algorithm which also does

not account for the direction that the blocking obstacle is moving in. Table 4.3 shows

the parameters used for the replanning the path with BIT*.

4.2.1.4 Optimal Reciprocal Collision Avoidance (ORCA)

The second algorithm that is tried by this thesis is to generate safe velocities using

the Optimal Reciprocal Collision Avoidance algorithm. For this method, the path

planner runs BIT* only after the simulation is initialized. The robot will follow this

32

Parameter Value
Time Horizon for Agents 2.125 frames

Time Horizon for Static Obstacles 2 frames
Search Radius 63.75 units

Table 4.4: These are the parameters chosen for ORCA. They were se-
lected in order for the robots to avoid each other with a minimal degree
of separation.

initial path, but the velocities generated from the method described in the Trajectory

Planning section are passed in as the robot’s desired velocity to the ORCA algorithm.

The algorithm should produce a safe, collision-avoiding velocity for the robot. The

resulting velocities generated by ORCA will be a floating point number that is less

than the robot’s maximum speed. The parameters for the algorithm are listed in

Table 4.4.

4.2.1.5 Path-guided Artificial Potential Fields (APF)

The final approach that is taken for this thesis is based on the path-guided artificial

potential field algorithms discussed in the Literature Review section. Like in that

algorithm, a path is generated when the simulation is initialized with BIT*. Then,

the robots are to navigate the environment using artificial potential field methods.

The method uses commonly used potential functions to handle the cases with static

obstacles and has an additional potential function for handling dynamic obstacles.

The attractive potential function is used to guide the robot towards the next waypoint

in the global plan provided by BIT*. The force has the robot follow the generated

path closely as shown in Equation 4.1.

The repulsive force put onto the robot is the sum of the repulsive forces imparted by

all obstacles in the environment. This is repulsion is inversely related to the distance

33

of the robot to a particular obstacle as in commonly used repulsive potential functions

as shown in Equation 4.2.

Finally, there is an adjustment potential that is used to avoid the other robots in the

system. This potential is only used when robots are close enough to each other and

if those robots are approaching each other head on. The magnitude of this force is

equal to the sum of all the obstacle potentials. The direction of the force is to the

right of the direction of travel for the robot as shown in Equation 4.3.

For all equations, ~w is the vector that starts at the robot’s current position and goes

to the next waypoint. ~o is the vector that extends from the robot’s current position

to an obstacle. Do is the obstacle range. Watt, Wrepl, Wcorr are the weights for the

attractive, repulsive, and adjustment forces respectively.

The potential functions and their scales are shown in the Table 4.5.

Fatt = Watt
~w

|~w|
(4.1)

Frepl = Wrepl(
1

|~o|
− 1

Do

)(
1

|~o|
)(

~o

|~o|
) (4.2)

Fcoordx = 0;Fcoordy = Wcorr

∑
i

1

|~o|
− 1

Do

(4.3)

34

Parameters Values
Watt 0.3
Do 500

Wrepl 30,000
Wcorr 32.0

Table 4.5: This table has the weights for the APF algorithm. They were
decided upon since they lead to the best chance of robots avoiding each
other.

35

Chapter 5

TESTING

In order to test the various methods used in this thesis, multiple environments were

used. For each environment, the number of robots run during the test was varied from

two robots to eight. Each environment was designed to stress each of the algorithms

in order to determine which would be the best approach in terms of how successful

and how efficient they were.

5.1 Environments

Six environments were used for testing the various approaches. The environments

were designed to stress both the path planning portion and the reactive portions of

the approaches. For each of the figures below, the obstacles in the environment are

the black rectangles and the start and goals for the environment are red circles. All

obstacles in the environments are static. The start and goal circles represent the points

where the robots are either start or finish. Each of these points is hand selected. For

each trial, a robot is randomly assigned one of these points to start from and another

point to end at. The first environment used is an obstacle free environment, shown

in Figure 5.1. For planning, the solution is trivial and the environment mostly tests

the performance of the reactive portions of the approach. With the freedom to move

in any direction, the reactive algorithms should be highly successful in navigating

the environment. The goals are designed in a way such that encourages the robots

to come into proximity with each other. This is the default environment used to

test multirobot path planning problems since if the algorithms used fail while not in

36

Figure 5.1: Empty Environment has no obstacles. The red dots indicate
the start and goal points.

37

Figure 5.2: Two Corridors Environment has three obstacles and two nar-
row corridors through to the other side of the environment.

the presence of obstacles, there is very low likelihood that they will succeed in the

presence of obstacles. This kind of environment was seen with [9], [20], and [2].

The next environment is the two corridors environment which has two narrow corri-

dors for the agents to pass through, shown in Figure 5.2. This makes it a little difficult

for the path planning to find a plan quickly. Additionally, the confined space in the

corridors limits the area the robots have to deviate from those paths in order to avoid

each other in the corridors, making it difficult for the reactive algorithms. The width

of the corridors in this environment is 140 units. The goals were created in order to

have the robots traverse the corridors as much as possible. This is a commonly used

environment to test similar algorithms as seen in [3].

38

Figure 5.3: Double Bug Trap Environment has robots in two room-like
structures. The robots will have to travel from one room to the other
room.

39

Figure 5.4: Office Environment features obstacles placed in an office-like
setting.

The next environment is the double bug trap environment, shown in Figure 5.3. This

environment provides a significantly more difficult challenge for planning since the

path must leave one trap and into the other trap. The traps also cause issues for the

reactive algorithms since there is less space for robots to deviate from their planned

paths. This is commonly used environment to test path planning algorithms and

their ability to find paths when the greediest path is unavailable as seen in [3].

The office environment has the robots navigating from one side of the environment

to the other in a way that will force them to travel through a single corridor, shown

in Figure 5.4. The idea behind this environment is that it is a slightly less contrived

as the other environments.

40

Figure 5.5: Random Environments are environments with randomly gen-
erated obstacles.

41

Finally, there are the two randomized environments, shown in Figure 5.5. These

environments were created in order to test how the approaches would perform in

general. These environments were generated by randomly assigning the positions

and sizes of the obstacles in the environment. The positions of the obstacles were

placed by randomizing the location of the top-left corner of the obstacles. The size

of the obstacles range between 50 and 100 units in both width and height. These

environments are similar to the ones used to test BIT* [6].

42

Chapter 6

RESULTS

In this section, the results of the trials run for testing the algorithms presented in

this paper will be analyzed. For each algorithm, the main competencies that will

be analyzed are efficiency and completeness. Efficiency refers to how quickly and/or

efficiently an algorithm is able to perform. Completeness refers to the ability of the

algorithm to have robots reach their goals. Additionally, each algorithm is compared

to planning a single robot with BIT* in both measures. The replanning algorithm

is observed in more depth to gain a better understanding of the operation of that

approach.

6.1 Metrics

In total, ten metrics were used in evaluating the various approaches. These metrics

can be subdivided into more general categories as they are related to each other.

The categories follow as such: efficiency metrics, success metrics, failure metrics, and

computational metrics.

6.1.1 Efficiency Metrics

Efficiency metrics aim to measure how efficiently and how quickly the approaches were

able to move the robots from their starting configuration to their final configuration.

The two measures that will be employed are average distance traveled and average

runtime for individual robots. Average distance traveled tries to capture how far an

43

individual robot traveled in its set of trials. Set of trials refers to the combination of

test environment, approach, and number of robots. Average runtime captures how

long it took for a robot to reach its goal for a particular set of trials.

6.1.2 Success Metrics

Success metrics show how capable the approaches were in having a robot travel from

its starting configuration to its goal configuration. This is captured in the success

rate metric which is the ratio of the number of robots that were successful able to

reach their goals compared to all robots run in a set of trials.

6.1.3 Failure Metrics

Failure metrics show how a set of trials failed to complete. The two measures used

here are the collision rate and the timeout rate for a set of trials. Collision rate is

the ratio of trials that ended with a robot colliding with an obstacle or other robot

to total trials. The timeout rate is the ratio of trials that reached the 30 second

time limit to the number of total trials. Timeout rate is a measure that indicates

how many times a set of robots in a trial would arrive in a deadlock situation where

neither robot(s) could progress toward their respective goals.

6.1.4 Computational Metrics

Computational metrics aim to determine the amount of computational resources

needed to run the approaches. The metrics used to indicate this measure are the

nodes added to the search tree, the nodes explored by the algorithms, and the nodes

sampled by the algorithm. These node-based metrics capture the memory cost for

44

Metric Description
Success Rate Number of robots that were able to successfully reach their goals vs total number of robots

Average Distance Average distance traveled by an individual robot
Runtime Average amount of time taken to by an individual robot to move in the environment

Collision Rate Ratio of number of trials that ended in a collision to the total number of trials
Timeout Rate Ratio of number of trials that ended in a timeout to the total number of trials
Nodes Added Average number of nodes added to search tree by a robot

Nodes Explored Average number of nodes explored by a robot
Nodes Sampled Average number of nodes sampled by a robot

Table 6.1: Summary of metrics used to evaluate the multi-robot ap-
proaches

approaches. For the CPU resource measures, the runtime metric is used here as well.

6.2 APF-based Approach

6.2.1 Completeness

In general, the success rate for the APF approach decreased with an increase in the

number of robots, as shown in Figure 6.1. The approach resulted in close to a 90%

success rate in the empty and double bug trap environments for variations in number

of robots. The approach performed worse in the office and first random environment

with the success rate dropping to between 70 and 80 percent when more than six

robots were in the environment. The APF approach struggled greatly in the two

corridors and second random environment with success rates falling from 85 percent

with two robots to 50 percent with eight robots.

6.2.2 Efficiency

In general, the average distances traveled by the robots increases slightly, as shown

in Figure 6.2. But, for the two corridors environment, the distance traveled is signif-

icantly higher. For trials with more than four robots, the average distance traveled

45

Figure 6.1: Success Rate for APF approach is shown. The double bug trap
and empty environments had the highest success rate, while the random2
and two corridor environments had the lowest.

46

Figure 6.2: Average distance traveled by robots using the APF-based ap-
proach is shown on the left. The average distanced traveled by successful
robots using the APF-based approach is shown on the right. The average
distance traveled in the two corridors environment jumps from 2000 units
to 3500 units once the number of robots in the environment increases be-
yond four robots. When controlling for only successful robots, the average
distance traveled remains mostly the same for all variations in number of
robots.

by robots in the two corridors environment jumps from around 2000 units to between

3000 and 3500 units.

When filtering out the robots that were unsuccessful in reach their goals, the average

distance traveled for all environments remain relatively stable for all variations in

number of robots. The average distance traveled for successful robots in the double

bug trap and office environments is higher than for other environments, but that is

due to the design of their environment. The average distance traveled by successful

robots in the two corridor environment drops to around 800 units which is similar to

the empty and random environments.

6.2.3 Cost

Figure 6.3 shows a plot for the average runtime for all robots in all trials and a

plot for only successful robots in those trials. Similar to the plot for the average

47

Figure 6.3: Average runtime for robots using the APF-based approach is
shown on the left. The average runtime for successful robots is shown on
the right. These plots show that the robots took considerably longer to
get to their goals in the double bug trap and office environments.

successful distance traveled, the double bug trap and office environments had higher

average runtimes than all other environments. Unlike the other environments, the

APF-based approach’s runtime increased with an increase in number of robots in

these environments. Another interesting result is that the average runtime for robots

was higher for successful robots than it was for all robots. This is due to an error in

the way runtimes were recorded. The runtime for a robot would only be recorded if

that robot successfully reached its goal. As a result, if a robot failed to reach its goal,

it would appear that its runtime was zero milliseconds instead of being the maximum

value of 30000 milliseconds.

6.2.4 Mechanisms of Failure

Figure 6.4 shows the collision rate and timeout rates for the APF-based trials. For

the empty, double bug trap, and office environments, the collision rate remained

below 10% for all variations in number of robots. For the two corridors and first

random environment, the collision rate increased from about 3% to around 20% with

the increase in number of robots. The second random environment had that most

48

Figure 6.4: The collision rate for trials with robots using the APF-based
approach is shown on the left. The timeout rate is shown on the right.
Collisions were only common in the random2 environment. Timeouts were
very common in the two corridors environment.

collisions out of all environments with the collision rate gradually increasing from

around 3% to over 50% as the number of robots increased from two to eight robots.

The timeout rate for all environments except for the two corridors environment in-

creased from less than 1% to around 30% to 40% as the number of robots increased.

For the second random environment, the timeout rate increased from 20% to 40%.

The timeout rate for the two corridors environment is similar in shape to the average

distance traveled by all robots with a jump in timeout rate from 30% to 70% in trials

with more than four robots.

6.2.5 Summary of Results for APF-based Approach

The APF-based approach was able to achieve decent results in having the robots reach

their goals, but it was far from perfect and the approach has issues with certain envi-

ronments. To gain insight into why the approach struggled with these environments,

the success rate plots from Figure 6.1 serve as a good starting point.

49

The two environments that the APF-based approach struggled with the most were

the two corridor and the second random environments. As the number of robots in

the environment increased, the success rate decreased at a steady rate from 85% to

below 50% success. The reasons why the approach failed in these environments are

distinct from each other and show some of the shortcomings of the approach.

The two corridor environment, as shown in Figure 5.2, consists of two narrow path-

ways though a large static obstacle in the middle of the environment. Figures 6.2 and

6.4 help illustrate why the APF-based approach failed.

Figure 6.2 shows that the average distance traveled in the environment was 1500 units

longer than the other environments. This is most likely due to multiple robots trying

to pass by each other in one of the corridors as shown in Figure 6.6. Due to the

combination of the coordination force from the other robots and the repulsive force

from the static obstacles, the robots exhibit a jittering behavior where the robots in

the corridor shake rapidly left and right in an effort to pass the other robots. The

corridor is small enough such that the side of the corridor push the robots to their left

such that they are unable to pass the other opposing robot. As a result, the average

distance traveled appears to be much higher since while the robots cannot progress,

they are still moving with a sizable velocity. This claim is supported by the timeout

rate plot in Figure 6.4 which shows that approximately 70% of all trials in the two

corridor environment with more than four robots end in a timeout due to the robots

reaching a deadlock.

For the second random environment, the primary mechanism of failure is a collision,

as shown in the collision rate plot in Figure 6.4. The second random environment,

as shown in Figure 5.5, has many areas where the static obstacles form a corner or

contain a tight space that is just large enough to allow a path through. As a result,

robots traversing the environment can reach a local minimum in the environment or

50

Figure 6.5: The yellow dotted robot has been trapped in a local minimum.
This is likely due to the path planner planning a route through a gap that
is too small.

collide with a static obstacle. A robot could get stuck in a local minimum if the

coordination force on that robot forces the robot to move into a corner, as shown in

Figure 6.5. A robot could collide with an obstacle if its planned path attempts to go

through a tight space since the opposing repulsive forces on the robot could cause the

robot to deviate from its path into that obstacles.

The APF-based approach does help the robots reach their goals, but there are issues

with the approach. These issues are most apparent in the two corridor and second

random environment. The two corridor environment shows that the approach can

result in multiple robots reaching a deadlock since the robots are unable to balance

the coordination force and repulsive forces to allow the robots progress toward their

goals. The second random environment results in many robots colliding with static

obstacles since there are many areas with local minimums.

51

Figure 6.6: The robots on the right are unable to pass each other.
Through rare, it is possible for the robots to make it through the pass.

52

Figure 6.7: Success rate for ORCA-based approach was at least 93% for
all experiments.

6.3 ORCA-based Approach

6.3.1 Completeness

The ORCA-based approach had a high success rate, at least 93 percent, for all en-

vironments and all variations in number of robots in those environments, as shown

in Figure 6.7. This indicates that the approach was able to handle the variance in

number of robots and all environments well.

53

Figure 6.8: The plots for average distance traveled for robots using ORCA-
based approach and successful average distance traveled look virtually
identical. The distance traveled did not increase with an increase in robots
for all environments.

6.3.2 Efficiency

Since the success rate of the ORCA approach was so high, the distances for both the

overall average distance traveled and the successful average distance traveled were vir-

tually the same, as shown in Figure 6.8. As with the success rate, the average distance

traveled was not affected by the increase in number of robots at all. This indicates

that the ORCA approach does not vary the distance traveled for the individual robots

in the trial even though there are robot-robot interactions.

6.3.3 Cost

Figure 6.9 shows the average runtimes for the robots which generally increase for an

increase in number of robots. For the double bug trap and the office environments,

they increase faster, but this is due to the structure of the environment which requires

the robots to travel further on average.

54

Figure 6.9: Average runtime for robots using ORCA-based approach shows
similar behavior to the average runtime for robots using the APF-based
approach with the double but trap and office environments having longer
average runtimes than the other environments.

Figure 6.10: The ORCA-based approach rarely resulted in either a collision
or timeout

6.3.4 Mechanisms of Failure

The ORCA-based approach rarely resulted in a failure, but when failures did occur,

it was most likely due to a deadlock, as shown in Figure 6.10. This would make sense

since ORCA intends on generating collision-free velocities. But, due to the reactive

nature of the ORCA algorithm, robots managed to get into deadlocked states and

local minimums as shown in Figures 6.11 and 6.12.

55

Figure 6.11: The solid blue robot fails to reach its goal due to being
trapped in a local minimum

The scenario shown in Figure 6.11 is one where a robot is trapped in a local minimum.

This kind of failure would result from one robot moving into position where there is

an obstacle between the waypoint and the robot. This event typically would occur

when one robot is trying to pass another in a narrow pass through static obstacles.

The robot would avoid the other by selecting a velocity that happens to bring the

robot towards a position behind an obstacle. After the other robot has passed, the

robot will attempt to select a velocity that will take it directly towards the next

waypoint in the plan. But, the only safe velocity that can be selected by the ORCA

algorithm is close to zero velocity since the robot is surrounded by static obstacles,

so the robot sits in that position until the end of the simulation.

Another situation that could result in a robot failing to reach its goal is reaching

a deadlocked state, as shown in Figure 6.12. This deadlock occurs when robots

approach each other at an obtuse angle with their next waypoints being very close to

56

Figure 6.12: It is possible for the ORCA approach to reach a deadlock.
This is likely due to the planner.

57

each other. In most cases, where the next waypoints for the robots are far from each

other, the colliding robots will be able to avoid each other with little deviation from

their paths, as shown in the figure on the right. But, if the waypoints are too close

to each other, the robots will continually want to travel to a point that is directly

through the other robot. Since the robot is only capable of knowing the velocity

of the other robot, they travel at an angle that bisects them continually until the

simulation end or if they reach another obstacle to break the deadlock.

6.4 Replanning Approach

6.4.1 Completeness

The replanning approach’s success rate was heavily influenced by the number of robots

in the environment. For all environments, the approach was virtually perfect for the

trials with two robots, and then the success rate gradually decreased as the number

of robots increased. Two groups seem to have formed in the plot shown in Figure

6.13. The first group consists of the empty and random environments which did not

experience as extreme of a reduction in success rate with the increase in number of

robots. The double bug trap, office, and two corridor environments saw a much more

drastic decrease in success rate with the success rate dropping close to 0% in trials

with eight robots for the double bug trap and office environments.

6.4.2 Efficiency

The success rate has a great influence of the average distance traveled metric for

the replanning approach, shown in Figure 6.14. This is because the robots would

not move until all replans were completed due to how the simulation was run. So,

58

Figure 6.13: Success rate of robots using the replanning approach de-
creases in all environments, more so in the double bug trap, office, and
two corridors environments.

59

Figure 6.14: Plots for average distance traveled for robots using replanning
approach that for most environments the distance traveled was about the
same for all variations in number of robots. But, in the double bug trap
environment, the average distance traveled decreases rapidly since most
robots end up in a deadlock.

if a single robot took a long time to find a feasible path, the simulation could time

out before all the robots had the opportunity to replan or to move. Therefore, for

cases where the approach was mostly unsuccessful, especially with the double bug

trap environment, the average distance traveled decreased with an increase in robots.

This measure is accurate and reflects the fact the robots did not move as far since

they were stuck in a deadlocked state. Interestingly, in cases where most robots were

successful, the average distance traveled remained the same even though the number

of robots increased.

This could indicate one of two outcomes. The first would be that the replanning

approach was only successful if the goal was close to the start. The second would

be that the distance traveled reflects the fact that only certain sets of start and goal

pairs were solvable by the approach. Since the distance between these pairs would be

the same, the average distance traveled would remain the same since these were the

only pairs being completed.

60

6.4.3 Cost

Figure 6.15 shows plots of the average runtime and the successful average runtime

metrics which were also greatly affected by whether or not a robot was successful in

traversing its path. The average runtime chart shows that for the office and double

bug trap environments, two of the most unsuccessful environments, that the average

runtime decreased with a higher number of robots. Both environments showed a sim-

ilar trend with the average runtime peaking in trials with four robots before steadily

decreasing to under 2000 milliseconds in trials with eight robots. This result can be

explained by a deficiency in the way the runtimes were recorded. If a robot failed to

reach its goal, its runtime was not recorded. This was an oversight in implementation

as those cases should be noted as having a runtime of 30000 milliseconds.

This result can be explained a few factors. Both the double bug trap and office envi-

ronments force the robots to travel through tight spaces. This could cause multiple

robots to have to perform a replan. There is a chance that some of those robots will

not be able to complete a replan since they would no longer have a feasible path they

could follow. Secondly, on average, the distance that a robot would need to travel in

these environments is higher than all other environments, as seen in the results from

the APF-based and ORCA-based approaches. Due to the distance, timeouts could

occur since the robots need more time to traverse the environment. In addition, due

to the implementation of the simulation, the robots could not move until all robots

had finished their replans. Therefore, one long replan could make the other robots

unsuccessful since they would no have enough time to reach their goal.

In Figure 6.15, the plot for the average successful runtime is different from the plots

for the same metric for the other approaches. For the other approaches, typically,

all environments except for the double bug trap and office environments, the runtime

61

Figure 6.15: Average runtime for robots using the replanning approach in
general increases as the number of robots increase for all environments.
The average runtime for double bug trap and office environments in the
plot on the left is slightly misleading since many robots got deadlocked
and were unable to record a runtime. As a result, the average runtime
decreased in those environments when the number of robots increased.

is about the same. This is reflected in the average distance traveled as for those

environments, the average distance traveled is about the same. Instead, for all envi-

ronments except for the empty environment, the average runtime for successful robots

increased at a faster rate than for the other environments. This is due to the amount

of time needed to complete a replan. The other approaches do not require as much

calculation time as the replanning process.

6.4.4 Mechanisms of Failure

Figure 6.16 shows the plots for the collision and timeout rate for trials with robots

using the replanning approach. The approach resulted in some trials ending in col-

lisions, but more trials ending in timeouts. The collision rate for all environments

generally increased with an increase with number of robots in the environment from

around 5% in two robot trials and rising to about 15% in eight robot trials. For

double bug trap, office, the timeout rate rose to around 80% in trials with more than

62

Figure 6.16: The replanning approach would result in some collisions, but
most trials ended in timeouts, especially in the double bug trap, office,
and two corridors environments.

six robots. For the two corridor environment, the timeout rate gradually increased

to about 60%.

For the empty environment, the collision and timeout rates were low. In the random

environments, the collision rate jumped from 0% to around 15% as the number of

robots increased beyond four robots. The timeout rate for the random environment

seemed to increase more rapidly when six or more robots were involved with the rate

increasing from about 15% to between 30% and 40%.

6.4.5 Additional Replanning Notes

The amount of nodes added, explored, and sampled per replan were recorded. Addi-

tionally, the amount of time those replan instances took was recorded as well. Those

instances were further filtered in the categories of whether or not the individual re-

plan was completed or not. The figures for all of these metrics are included in the

appendix.

The results show that all of these metrics increased with an increase in number of

robots. As previously stated, this can likely be explained by the fact that more

63

robots in an environment results in a more complex environment since there are more

obstacles in the environment. Additionally, the robot-robot interactions become more

complex as well.

There are two distinct groups that form here as well. There are the more complex

environments which have more constrained spaces and the simpler environments with

less constrained spaces. In the simpler environments, there is more space so it is more

likely that the replanning algorithm will be able to generate a new path quickly.

6.4.6 Summary of Replanning Approach Results

All the results presented in the previous subsections reflect a common theme about

which environments gave the replanning approach the most difficulty. This theme

does not become apparent without first starting with the success rate, which affected

the other metrics. In Figure 6.13, two groups form. The first group is the empty

and random environments. The second consists of the double bug trap, office, and

two corridor environments. The replanning approach was more successful in the first

group of environments than the second group of environments.

The main difference between these environments is the presence of long corridors or

tight spaces. In the empty and random environments, long corridors do not exist and

the approach is more successful. In the other environments, long corridors and tight

spaces exist. The replanning approach fails in these environments primarily due to

timeouts, as shown in Figure 6.16. These timeouts generally occur due to the amount

of time the replanning portion of the approach takes.

As shown in the Additional Notes subsection, for all variants in number of robots, the

amount of nodes explored in the replan is higher in the tight space or long corridor

environments. The replanning approach uses BIT* to replan a path if the robot’s

64

current path is no longer valid. The implementation of BIT* uses a rectangular area

to connect the nodes it explores. In areas with tight spaces or long corridors, the

BIT* implementation will be unable to find a new path because of this rectangular

area since it is unlikely that there is enough space to find a valid configuration. As a

result, the replan would timeout after five seconds.

Even if robots were able to complete some successful replans, eventually, they would

move into a state where they could be too close to each other such that replans would

not longer be feasible.

In the environments lacking these tight spaces, the approach was more successful

since it would be more likely for a new path to be found by a replan.

The collisions are most likely due to the non-cooperative nature of the replanning

approach as robots could replan paths that would overlap each other.

6.5 Comparison to Single Robot Case

When comparing how the approaches fared in a multi-robot trial to how they fared

in a single robot trial, a couple trends emerged. First, the amount of nodes sampled

was roughly the same for approaches. For the number of nodes added to the search

tree, number of nodes explored by BIT*, and planning time for the initial plan, no

discernable pattern emerged. This was likely due to the random nature of the BIT*

planning algorithm. Secondly, the runtime of the robots increased as the number

of robots in the trial increased when compared to the single robot runtime. This

behavior is expected since in the multi-robot trials, the robots will have to handle

robot-robot interactions which result in the robots deviating from their near optimal

paths. All figures relating to these results are in the appendix.

65

Approach Advantages Drawbacks
APF Relatively quick and efficient Unable to handle long corridors or local minimums

ORCA Relatively quick and efficient Still reached local minimums and deadlocks
Replanning Did not get caught in local minimums Slow and Unable to handle tight spaces

Table 6.2: This table summarizes the strengths and weaknesses of the
approaches experimented with in this thesis. Overall, the ORCA-based
approach outperformed the others.

6.6 Comparison of Algorithms

In general, the ORCA-based approach out performed the APF-based and the replan-

ning approaches. While the APF-based approach was able to match the ORCA-based

approach in terms of speed and efficiency, it was unable to handle all environments

as well as the ORCA-based approach. It was difficult to evaluate the replanning ap-

proach since most of the robots in those trials were unable to reach their goals before

the trial timed out after 30 seconds.

Another drawback for both the APF-based and replanning approaches is how those

approaches failed. The APF-based approach would fail mostly due to a robot reaching

a local minimum or multiple robots reaching a deadlocked state. The replanning

approach would mostly fail due to robots reaching a deadlock.

Both approaches resulted in different behavior when reaching a deadlock. For the

APF-based approach, the robots would oscillate in an attempt to move past each

other. For the replanning approach, the robots would stop and wait for a replan to

complete. These findings are summarized in Table 6.2.

6.7 Comparison to Reactive Multi-robot Path Planning

Trials were run with robots only using reactive algorithms, such as ORCA and APF,

to show the effectiveness of the addition of adding a global planner to these algorithms.

66

The results showed that the addition of a global planner, in this case BIT*, improved

the success of the robots reaching their respective goals. This is illustrated in the

success rate and success distance metrics. The success rate metric shows that most

robots in all environments failed to reach their goals. Success distance supports this

as the distances were short in comparison to the distances of the trials with the global

planners.

The reactive multi-robot path planning algorithms were only capable of solving prob-

lems where a robot had a direct line of sight of its goal from its starting point, as

shown in the figures below. Additionally, this result is supported by the success rate

in the empty environment being the highest for all reactive algorithms tested. The

empty environment did not have obstacles, so all robots had a direct line of sight to

their goals.

67

Chapter 7

CONCLUSION

In this thesis, three approaches were experimented with to address the problem of

multi-robot path planning. These approaches can be categorized as decentralized,

noncooperative algorithms as robots do not explicitly coordinate with each other and

plan their own paths independently. All approaches used the BIT* algorithm as the

basis for path planning for each of the robots. Of those approaches, the method that

used ORCA to safely avoid the other agents was by far the most successful. The

ORCA-based approach was able to successful navigate the agents to their desired

goals in almost all occasions.

The other methods failed to match that mark and the agents using this methods failed

to reach their goals in a timely manner if at all. The success of the other methods,

an APF-based approach and a replanning approach, were heavily dependent on the

environment they were deployed in. The APF-based approach struggled with envi-

ronment containing many environmental local minimums and long, narrow corridors.

The replanning approach struggled with corridors and tight spaces.

The replanning approach was the less viable out of all the approaches tested as it

was not fast enough to get all robots to their goals within the simulation time limit

in the majority of cases. The APF-based approach was more successful that the

replanning approach for this reason. But, since the ORCA-based approach performed

at such a high success rate in all environments, it can be considered as the only

promising approach to handling the multi-robot planning problem in a decentralized,

noncooperative way.

68

7.1 Future Works

There are elements of this thesis that need to be improved and there are also elements

of this thesis that could be extended.

As for improvements, the implementation of BIT* that was used in this thesis was

many orders of magnitude slower than that of the implementation used in the original

paper [6]. This could be due to the fact that this implementation was done in Python.

If the algorithm could be reimplemented more efficiently in a language like C++, the

outcomes of some of the approaches could be improved. For example, the replanning

approach could have been more successful if the BIT* planner was faster.

Another potential reason for the slowness of the planners is that the simulation ran

on a single thread. As a result, the approaches tested in this thesis were not totally

accurate to their intentions since robots would not be able to plan paths simulta-

neously. This did not have a great effect on the outcome of the thesis, especially

in regards to the replanning algorithm which would have probably resulted in many

simulation timeouts any way. In future experiments, a multi-core machine or multiple

CPUs should be used to simulate the robots individually to help improve results.

Speaking of replanning, the logic behind how replans would be triggered and how

they would be executed could be reworked. A potential solution is to use D*-Lite as

an inspiration for the incremental search algorithm in place of LPA*. Since D*-Lite

is based on LPA*, this seems like it could be a feasible solution.

A common problem for the artificial potential field and ORCA-based methods was

that the robots still managed to be trapped in local minima despite their planned

paths. This issue could be attributed to the waypoint management system used

in these algorithms. The next waypoint to travel to for these algorithms would only

69

update if a robot traveled close enough to them. If a robot failed to so, the robot would

continually attempt to travel towards their previously determined next waypoint and

remain trapped. There could be other approaches to mitigate this problem such

as unordering the waypoints. This method would attract the robots to the nearest

waypoint regardless of the robot having passed by the waypoints that preceded the

nearest waypoint in the path. Another could be to use a random walk method to

disturb the robot enough to have it travel out of the local minima.

As for the artificial potential field method, the coordination force used in the approach

could be improved to increase the success rate of that approach. But, due to the

jittering behavior of the agents using the approach, it may not be worth pursuing it

since jittering would not be suitable for physical robots.

Finally, the ORCA-based approached was shown to be the most successful approach

used. This could speak to the overall viability of using a sample-based planning

method as a global planner and a collision avoidance algorithm as a way of resolving

near-collision conditions. Therefore, it could be interesting to see how other collision

avoidance and other sample-based planners can work in place of ORCA and BIT*

respectively. Additionally, it could be worthwhile to implement the approach on phys-

ical robots or at least robots with more complex dynamics to see how the approach

handles dynamic constraints. Implementation on physical robots will also enable to

see how the approach works on a distributed system.

70

BIBLIOGRAPHY

[1] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed

representation approach. The International Journal of Robotics Research,

10(6):628–649, 1991.

[2] S. Chen, Z. Yang, Z. Liu, and H. Jin. An improved artificial potential field

based path planning algorithm for unmanned aerial vehicle in dynamic

environments. In 2017 International Conference on Security, Pattern

Analysis, and Cybernetics (SPAC), pages 591–596. IEEE, 2017.

[3] H.-T. Chiang, N. Malone, K. Lesser, M. Oishi, and L. Tapia. Path-guided

artificial potential fields with stochastic reachable sets for motion planning

in highly dynamic environments. In 2015 IEEE International Conference

on Robotics and Automation (ICRA), pages 2347–2354. IEEE, 2015.

[4] V. R. Desaraju and J. P. How. Decentralized path planning for multi-agent

teams with complex constraints. Autonomous Robots, 32(4):385–403, 2012.

[5] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Informed rrt*: Optimal

sampling-based path planning focused via direct sampling of an admissible

ellipsoidal heuristic. In 2014 IEEE/RSJ International Conference on

Intelligent Robots and Systems, pages 2997–3004. IEEE, 2014.

[6] J. D. Gammell, S. S. Srinivasa, and T. D. Barfoot. Batch informed trees (bit*):

Sampling-based optimal planning via the heuristically guided search of

implicit random geometric graphs. In 2015 IEEE International Conference

on Robotics and Automation (ICRA), pages 3067–3074. IEEE, 2015.

71

[7] P. E. Hart, N. J. Nilsson, and B. Raphael. A formal basis for the heuristic

determination of minimum cost paths. IEEE transactions on Systems

Science and Cybernetics, 4(2):100–107, 1968.

[8] J. E. Hopcroft, J. T. Schwartz, and M. Sharir. On the complexity of motion

planning for multiple independent objects; pspace-hardness of the”

warehouseman’s problem”. The International Journal of Robotics Research,

3(4):76–88, 1984.

[9] P. Janovskỳ, M. Cáp, and J. Vokŕınek. Finding coordinated paths for multiple

holonomic agents in 2-d polygonal environment. In Proceedings of the 2014

international conference on Autonomous agents and multi-agent systems,

pages 1117–1124. International Foundation for Autonomous Agents and

Multiagent Systems, 2014.

[10] R. Kala. Rapidly exploring random graphs: motion planning of multiple mobile

robots. Advanced Robotics, 27(14):1113–1122, 2013.

[11] S. Karaman and E. Frazzoli. Sampling-based algorithms for optimal motion

planning. The international journal of robotics research, 30(7):846–894,

2011.

[12] L. E. Kavraki, P. Svestka, J.-C. Latombe, and M. H. Overmars. Probabilistic

roadmaps for path planning in high-dimensional configuration spaces.

IEEE transactions on Robotics and Automation, 12(4):566–580, 1996.

[13] S. Koenig, M. Likhachev, and D. Furcy. Lifelong planning a. Artificial

Intelligence, 155(1-2):93–146, 2004.

[14] J. J. Kuffner and S. M. LaValle. Rrt-connect: An efficient approach to

single-query path planning. In Proceedings 2000 ICRA. Millennium

72

Conference. IEEE International Conference on Robotics and Automation.

Symposia Proceedings (Cat. No. 00CH37065), volume 2, pages 995–1001.

IEEE, 2000.

[15] S. M. LaValle. Rapidly-exploring random trees: A new tool for path planning.

1998.

[16] S. M. LaValle. Planning algorithms. Cambridge university press, 2006.

[17] PyQT. Pyqt reference guide. 2012.

[18] D. Silver. Cooperative pathfinding. AIIDE, 1:117–122, 2005.

[19] C. Urmson and R. Simmons. Approaches for heuristically biasing rrt growth.

In Proceedings 2003 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS 2003)(Cat. No. 03CH37453), volume 2, pages

1178–1183. IEEE, 2003.

[20] J. Van Den Berg, S. J. Guy, M. Lin, and D. Manocha. Reciprocal n-body

collision avoidance. In Robotics research, pages 3–19. Springer, 2011.

[21] G. Wagner and H. Choset. M*: A complete multirobot path planning

algorithm with performance bounds. In 2011 IEEE/RSJ international

conference on intelligent robots and systems, pages 3260–3267. IEEE, 2011.

[22] G. Wagner, M. Kang, and H. Choset. Probabilistic path planning for multiple

robots with subdimensional expansion. In 2012 IEEE International

Conference on Robotics and Automation, pages 2886–2892. IEEE, 2012.

[23] A. Yershova and S. M. LaValle. Improving motion-planning algorithms by

efficient nearest-neighbor searching. IEEE Transactions on Robotics,

23(1):151–157, 2007.

73

.1 Comparison to Single Robot Planning APF

In the more complex environments, it appears that the number of explored nodes was

about the same as for the single robot case. In the simpler environments, it seems

like more nodes were explored since more robots in the environments lead to creating

a more complex environment. As a result, plan time increased accordingly.

.2 Comparison to Single Robot Planning ORCA

In comparisons with the single robot case, the average runtime was significantly

greater than the single robot runtime for all environments. The trends for average

runtime matched the trends seen in the costs section. There were more nodes added

and explored by the approach than in the single robot case. But, as seen previously

this difference was more pronounced in ”easier” environments such as the empty and

random environments than in the more complex environments. As before, a possible

reason for this difference is that the addition of robots in the simpler environments

increases the magnitude of complexity of those environments more than the other

more complex environments.

.3 Comparison to Single Robot Planning

For the single robot comparison, metrics like average runtime and average distance

traveled mirrored the results explained the cost and efficiency sections. The strangest

outcome is that more nodes were explored and added in the randomized environments

compared to all other environments. This result is unexpected since the planning

74

75

76

technique used for the APF and ORCA approaches is the exact same as the technique

used for the replanning approach.

Due to the random nature of the planning algorithm, this could be due to random

chance, but since so many trials were run, it would seem unlikely. Perhaps, there

could have been an error in recording and these results are also dependant on the

success of the robots as well. This could be a possibility since the number of nodes

explored for the most difficult environments is around half of that of the single robot

case.

.4 Replanning Metrics

77

78

79

A*(start, goal)

begin
Initialize priority queue for nodes;
Add start node to priority queue;
while Queue is not empty do

Pop queue;
if Popped node is not the goal then

Calculate the costs for all neighbors to popped node;
if Neighbor is not in queue or has improved cost then

Add neighbor to queue and update its parent node;
end

end

end
if Last node is goal then

Backtrace from goal node to start node using the parent nodes;
Return path;

end
Return infeasible;

end
Algorithm 3: A*(start, goal)

80

RRT(start, goal)

begin
Initialize tree with starting configuration;
while Goal has not been reached do

Sample random point in space;
Find closest node in tree to sampled point;
Extend new node in tree from closest node towards sampled point;
if New node and edge between closest node and new node are
collision-free then

Add new node to tree;
end

end
Return tree;

end
Algorithm 4: RRT(start, goal)

BIT*-Replanning(start, goal)

begin
Generate initial plan with BIT*;
while Robot has not reached goal do

if Condition for replan triggered then
Rerun BIT* using only one sample per iteration;
Move robot in direction of its next waypoint;
if Close to next waypoint then

Update current waypoint to next waypoint;
end

end

end

end
Algorithm 5: BIT*-Replanning(start, goal)

81

BIT*-APF(start, goal)

begin
Generate initial plan with BIT*;
while Robot has not reached goal do

Set next waypoint as goal for APF;
Calculate next velocity with APF method;
Move robot using calculated velocity;
if Close to next waypoint then

Update current waypoint to next waypoint;
end

end

end
Algorithm 6: BIT*-APF(start, goal)

BIT*-ORCA(start, goal)

begin
Generate initial plan with BIT*;
while Robot has not reached goal do

Calculate desired velocity using robot’s current position and next
waypoint;

Run ORCA with desired velocity as input;
Move robot at velocity of velocity output from ORCA;
if Close to next waypoint then

Update current waypoint to next waypoint;
end

end

end
Algorithm 7: BIT*-ORCA(start, goal)

82

BIT*(start, goal)

begin
Initialize tree with only the start in the tree;
Initialize the edge and vertex queues as empty queues;
Set the informed space to be the whole environment;
while the termination condition has not been reached do

if the queues are empty then
Update the informed space;
Remove all samples that are outside of the informed subproblem;
Add samples to the space from the informed subproblem;
Add all vertices in the tree to the vertex queue;

end
while there are vertices worth exploring do

Add edges from the best vertex to new samples that can improve
the current solution to the edge queue;

Add edges from the best vertex to vertices in the tree that can
improve their current cost;

Get the best edge from the edge queue;
if the best edge is within the informed subproblem then

if after collision checking the edge, the edge still could improve
the solution then

if the edge improves the cost to the edge’s endpoint then
Update the tree with the new edge;
Prune edge queue based on new edge;

end

end

end
else

Flush both queues
end

end

end
Return the tree

end
Algorithm 8: BIT*(start, goal)

83

Number of Robots
Environment Metric 2 3 4 5 6 7 8

Double Bug Trap Distance 1094.75 1744.67 2156.5 1483.3 1784.17 2224.21 1719.38
Runtime 4666.92 5905.19 5036.07 6777.31 7003.83 7651.03 8345.86
Success 1.0 0.944 0.833 0.94 0.867 0.862 0.921

Empty Distance 767.75 910.83 1298.25 1134.1 1486.67 1461.57 1251.44
Runtime 2528.88 2371.57 2377.88 2667.75 2472.82 2491.63 2595.64
Success 1.0 0.978 0.933 0.96 0.911 0.914 0.942

Office Distance 1292.25 1676.17 2180.88 1723.6 1889.58 1990.0 1699.75
Runtime 4290.92 4528.13 5099.74 5885.67 6350.99 6406.85 6983.0
Success 0.967 0.822 0.792 0.867 0.8 0.724 0.817

Random 1 Distance 963.0 774.5 1313.0 1592.7 1771.08 1127.14 1662.75
Runtime 2331.28 2396.07 2183.06 2558.97 2021.46 2359.73 2570.72
Success 0.933 0.967 0.85 0.86 0.739 0.738 0.658

Random 2 Distance 1721.0 1313.0 1270.5 1455.8 1159.75 1395.0 1166.56
Runtime 2493.08 2734.13 2177.93 1896.71 1922.57 1615.35 1563.62
Success 0.85 0.8 0.7 0.607 0.572 0.471 0.483

Two Corridors Distance 1897.5 1850.0 1906.88 3522.4 3573.58 2961.5 3455.81
Runtime 2688.28 3037.77 2428.71 1907.66 1798.99 1746.22 1595.61
Success 0.85 0.878 0.708 0.587 0.556 0.476 0.508

Table .1: Metrics for All Robots using BIT*-APF

Number of Robots
Environment Metric 2 3 4 5 6 7 8

Double Bug Trap Distance 1094.75 1377.35 1266.6 1312.55 1260.29 1482.85 1374.37
Runtime 4666.92 6252.55 6043.28 7209.91 8081.34 8876.88 9063.38

Empty Distance 767.75 726.31 755.09 811.56 771.95 772.19 777.94
Runtime 2528.88 2425.47 2547.72 2778.9 2714.07 2725.22 2756.43

Office Distance 1031.12 1145.68 1101.32 1108.96 1183.13 1191.41 1215.46
Runtime 4438.88 5507.19 6441.78 6791.15 7938.74 8851.57 8550.61

Random 1 Distance 689.2 682.41 652.35 701.86 673.2 720.19 754.27
Runtime 2497.8 2478.69 2568.3 2975.55 2735.81 3197.05 3904.89

Random 2 Distance 784.41 827.92 753.04 760.71 720.87 751.06 708.23
Runtime 2933.04 3417.67 3111.32 3126.45 3359.83 3426.49 3235.07

Two Corridors Distance 830.88 893.92 850.76 765.51 723.3 726.3 615.12
Runtime 3162.69 3460.75 3428.76 3251.69 3238.19 3667.06 3138.9

Table .2: Metrics for Successful Robots using BIT*-APF

84

Number of Robots
Environment Metric 2 3 4 5 6 7 8

Double Bug Trap Distance 1289.2 1119.4 1284.83 1266.55 1172.47 1306.11 1145.54
Runtime 5805.43 5160.59 6524.62 6980.68 6937.43 8931.31 8030.43
Success 1.0 1.0 0.95 0.953 0.994 0.952 0.929

Empty Distance 674.75 690.65 738.38 680.26 748.59 729.21 721.6
Runtime 2267.9 2261.96 2527.93 2408.33 2668.63 2715.54 2638.98
Success 1.0 0.956 0.983 1.0 0.989 1.0 0.983

Office Distance 1039.96 997.79 1058.37 1009.91 1034.62 1007.57 1033.53
Runtime 4618.32 5391.89 5827.68 6605.58 6936.56 7594.51 7088.28
Success 1.0 0.967 0.975 0.993 0.989 0.981 0.988

Random 1 Distance 684.15 645.35 618.9 612.38 618.41 618.55 627.56
Runtime 2517.58 2465.87 2364.76 2927.71 2911.52 3164.53 3492.0
Success 0.983 0.989 1.0 0.993 1.0 1.0 1.0

Random 2 Distance 777.96 777.26 740.79 689.47 691.66 733.24 725.22
Runtime 3001.17 3307.24 3192.93 3244.43 2896.08 3611.95 3497.58
Success 0.983 1.0 1.0 0.987 0.978 1.0 0.992

Two Corridors Distance 758.52 764.13 811.01 761.69 852.3 782.32 774.43
Runtime 2888.12 3037.77 3396.93 3485.59 4005.92 3660.36 4161.89
Success 1.0 1.0 1.0 0.987 0.994 0.99 1.0

Table .3: Metrics for All Robots Using BIT*-ORCA

Number of Robots
Environment Metric 2 3 4 5 6 7 8

Double Bug Trap Distance 1289.2 1119.4 1251.11 1311.41 1167.86 1346.73 1227.15
Runtime 5805.43 5160.59 6868.02 7322.39 6976.19 9377.88 8642.62

Empty Distance 674.75 687.7 739.56 680.26 747.57 729.21 721.05
Runtime 2267.9 2367.16 2570.77 2408.33 2698.61 2715.54 2683.71

Office Distance 1039.96 1006.88 1066.81 1012.22 1040.96 1019.9 1037.2
Runtime 4618.32 5577.82 5977.1 6649.91 7014.5 7741.98 7178.01

Random 1 Distance 684.29 647.48 618.9 613.47 618.41 618.55 627.56
Runtime 2560.25 2493.57 2364.76 2947.36 2911.52 3164.53 3492.0

Random 2 Distance 781.44 777.26 740.79 690.72 694.93 733.24 725.7
Runtime 3052.03 3307.24 3192.93 3288.27 2961.9 3611.95 3526.97

Two Corridors Distance 758.52 764.13 811.01 761.77 851.09 779.23 774.43
Runtime 2888.12 3037.77 3396.93 3532.7 4028.3 3695.56 4161.89

Table .4: Metrics for Successful Robots Using BIT*-ORCA

85

Number of Robots
Environment Metric 2 3 4 5 6 7 8

Double Bug Trap Distance 1027.75 1151.83 965.63 701.1 429.92 288.24 146.25
Runtime 5938.65 7649.93 7977.74 6788.37 4959.99 3194.62 1534.63
Success 0.967 0.911 0.75 0.644 0.356 0.23 0.108

Empty Distance 721.5 731.67 787.0 750.6 762.17 782.36 794.69
Runtime 2401.98 2505.42 2969.78 2951.27 3091.92 3375.32 4301.64
Success 1.0 1.0 0.967 0.973 0.889 0.905 0.979

Office Distance 1019.0 958.33 1048.38 772.1 706.25 566.29 541.5
Runtime 6226.07 6872.14 10312.39 6799.93 5364.43 2402.43 1968.81
Success 0.967 0.867 0.842 0.487 0.289 0.129 0.108

Random 1 Distance 604.0 654.83 683.13 666.93 645.75 694.79 526.94
Runtime 2117.43 2905.41 5154.56 5906.18 7331.31 7763.42 6842.1
Success 0.983 0.954 0.992 0.917 0.844 0.824 0.463

Random 2 Distance 797.25 770.67 767.38 850.9 725.42 787.71 580.6
Runtime 3358.12 3963.17 4730.92 7304.26 7499.11 10960.9 7292.07
Success 0.983 0.944 0.983 0.887 0.794 0.781 0.591

Two Corridors Distance 702.25 914.0 762.88 747.72 582.5 560.29 462.42
Runtime 2827.1 5922.32 4636.65 6393.43 5601.73 6826.69 5359.95
Success 0.95 0.878 0.692 0.655 0.528 0.476 0.391

Table .5: Metrics for All Robots Using BIT*-Replanning

Number of Robots
Environment Metric 2 3 4 5 6 7 8

Double Bug Trap Distance 1054.91 1152.99 1073.17 844.63 593.91 476.81 283.85
Runtime 6143.43 8396.27 10636.99 10543.64 13949.97 13866.0 14165.81

Empty Distance 721.5 731.67 797.46 759.76 803.34 812.84 800.04
Runtime 2401.98 2505.42 3072.19 3032.13 3478.41 3730.62 4393.17

Office Distance 1025.69 1021.92 1097.67 997.81 1009.62 925.0 920.19
Runtime 6440.76 7929.4 12252.35 13972.45 18569.19 18685.56 18173.65

Random 1 Distance 609.15 663.61 687.98 693.38 683.68 715.66 634.73
Runtime 2153.32 3045.43 5197.87 6439.07 8681.82 9423.8 14793.73

Random 2 Distance 803.14 772.94 758.77 879.59 810.94 858.57 681.68
Runtime 3415.03 4196.29 4811.1 8237.89 9439.44 14035.29 12348.62

Two Corridors Distance 710.79 921.84 820.3 790.42 708.16 650.4 586.48
Runtime 2975.89 6746.95 6703.59 9758.39 10613.8 14336.04 13723.82

Table .6: Metrics for Successful Robots Using BIT*-Replanning

86

	LIST OF TABLES
	LIST OF FIGURES
	1 Introduction
	2 Literature Review
	2.1 Centralized Multi Robot Planning
	2.1.1 M*
	2.1.2 Rapidly-exploring Random Graphs (RRG)
	2.1.3 ORCA-RRT*

	2.2 Decentralized Multi Robot Planning
	2.2.1 DMA-RRT

	2.3 Dynamic Environment Planning
	2.3.1 Path-Guided APF-SR
	2.3.2 Dynamic APF

	3 Background Information
	3.1 Path Planning Algorithms
	3.1.1 Graph-Based Planning
	3.1.1.1 A*

	3.1.2 Sample-Based Planning
	3.1.2.1 Rapidly-Exploring Random Trees (RRT)

	3.1.3 Batch Informed Trees (BIT*)

	3.2 Reactive Algorithms
	3.2.1 Artificial Potential Fields (APF)
	3.2.2 Reciprocal Collision Avoidance

	4 Approach
	4.1 Simulation Workflow
	4.2 Robot Workflow
	4.2.1 Implementations of Robot Workflow
	4.2.1.1 Path Planning
	4.2.1.2 Trajectory Generation
	4.2.1.3 Replanning
	4.2.1.4 Optimal Reciprocal Collision Avoidance (ORCA)
	4.2.1.5 Path-guided Artificial Potential Fields (APF)

	5 Testing
	5.1 Environments

	6 Results
	6.1 Metrics
	6.1.1 Efficiency Metrics
	6.1.2 Success Metrics
	6.1.3 Failure Metrics
	6.1.4 Computational Metrics

	6.2 APF-based Approach
	6.2.1 Completeness
	6.2.2 Efficiency
	6.2.3 Cost
	6.2.4 Mechanisms of Failure
	6.2.5 Summary of Results for APF-based Approach

	6.3 ORCA-based Approach
	6.3.1 Completeness
	6.3.2 Efficiency
	6.3.3 Cost
	6.3.4 Mechanisms of Failure

	6.4 Replanning Approach
	6.4.1 Completeness
	6.4.2 Efficiency
	6.4.3 Cost
	6.4.4 Mechanisms of Failure
	6.4.5 Additional Replanning Notes
	6.4.6 Summary of Replanning Approach Results

	6.5 Comparison to Single Robot Case
	6.6 Comparison of Algorithms
	6.7 Comparison to Reactive Multi-robot Path Planning

	7 Conclusion
	7.1 Future Works

	BIBLIOGRAPHY
	.1 Comparison to Single Robot Planning APF
	.2 Comparison to Single Robot Planning ORCA
	.3 Comparison to Single Robot Planning
	.4 Replanning Metrics

