191 research outputs found

    Tradeoffs for nearest neighbors on the sphere

    Get PDF
    We consider tradeoffs between the query and update complexities for the (approximate) nearest neighbor problem on the sphere, extending the recent spherical filters to sparse regimes and generalizing the scheme and analysis to account for different tradeoffs. In a nutshell, for the sparse regime the tradeoff between the query complexity nρqn^{\rho_q} and update complexity nρun^{\rho_u} for data sets of size nn is given by the following equation in terms of the approximation factor cc and the exponents ρq\rho_q and ρu\rho_u: c2ρq+(c2βˆ’1)ρu=2c2βˆ’1.c^2\sqrt{\rho_q}+(c^2-1)\sqrt{\rho_u}=\sqrt{2c^2-1}. For small c=1+Ο΅c=1+\epsilon, minimizing the time for updates leads to a linear space complexity at the cost of a query time complexity n1βˆ’4Ο΅2n^{1-4\epsilon^2}. Balancing the query and update costs leads to optimal complexities n1/(2c2βˆ’1)n^{1/(2c^2-1)}, matching bounds from [Andoni-Razenshteyn, 2015] and [Dubiner, IEEE-TIT'10] and matching the asymptotic complexities of [Andoni-Razenshteyn, STOC'15] and [Andoni-Indyk-Laarhoven-Razenshteyn-Schmidt, NIPS'15]. A subpolynomial query time complexity no(1)n^{o(1)} can be achieved at the cost of a space complexity of the order n1/(4Ο΅2)n^{1/(4\epsilon^2)}, matching the bound nΞ©(1/Ο΅2)n^{\Omega(1/\epsilon^2)} of [Andoni-Indyk-Patrascu, FOCS'06] and [Panigrahy-Talwar-Wieder, FOCS'10] and improving upon results of [Indyk-Motwani, STOC'98] and [Kushilevitz-Ostrovsky-Rabani, STOC'98]. For large cc, minimizing the update complexity results in a query complexity of n2/c2+O(1/c4)n^{2/c^2+O(1/c^4)}, improving upon the related exponent for large cc of [Kapralov, PODS'15] by a factor 22, and matching the bound nΞ©(1/c2)n^{\Omega(1/c^2)} of [Panigrahy-Talwar-Wieder, FOCS'08]. Balancing the costs leads to optimal complexities n1/(2c2βˆ’1)n^{1/(2c^2-1)}, while a minimum query time complexity can be achieved with update complexity n2/c2+O(1/c4)n^{2/c^2+O(1/c^4)}, improving upon the previous best exponents of Kapralov by a factor 22.Comment: 16 pages, 1 table, 2 figures. Mostly subsumed by arXiv:1608.03580 [cs.DS] (along with arXiv:1605.02701 [cs.DS]

    Covering codes

    Get PDF

    Covering radius and the chromatic number of Kneser graphs

    Get PDF
    AbstractLet C be a binary linear code with covering radius R and let C0 be a subcode of C with codimension i. We prove that the covering radius R0 of C satisfies R0 β©½ 2R + 2i βˆ’ 1, by setting up a graph coloring problem involving Kneser graphs
    • …
    corecore