4,773 research outputs found

    Searching for periodic sources with LIGO. II: Hierarchical searches

    Full text link
    The detection of quasi-periodic sources of gravitational waves requires the accumulation of signal-to-noise over long observation times. If not removed, Earth-motion induced Doppler modulations, and intrinsic variations of the gravitational-wave frequency make the signals impossible to detect. These effects can be corrected (removed) using a parameterized model for the frequency evolution. We compute the number of independent corrections Np(ΔT,N)N_p(\Delta T,N) required for incoherent search strategies which use stacked power spectra---a demodulated time series is divided into NN segments of length ΔT\Delta T, each segment is FFTed, the power is computed, and the NN spectra are summed up. We estimate that the sensitivity of an all-sky search that uses incoherent stacks is a factor of 2--4 better than would be achieved using coherent Fourier transforms; incoherent methods are computationally efficient at exploring large parameter spaces. A two-stage hierarchical search which yields another 20--60% improvement in sensitivity in all-sky searches for old (>= 1000 yr) slow (= 40 yr) fast (<= 1000 Hz) pulsars. Assuming 10^{12} flops of effective computing power for data analysis, enhanced LIGO interferometers should be sensitive to: (i) Galactic core pulsars with gravitational ellipticities of \epsilon\agt5\times 10^{-6} at 200 Hz, (ii) Gravitational waves emitted by the unstable r-modes of newborn neutron stars out to distances of ~8 Mpc, and (iii) neutron stars in LMXB's with x-ray fluxes which exceed 2×10−8erg/(cm2s)2 \times 10^{-8} erg/(cm^2 s). Moreover, gravitational waves from the neutron star in Sco X-1 should be detectable is the interferometer is operated in a signal-recycled, narrow-band configuration.Comment: 22 Pages, 13 Figure

    Gravitational waves: search results, data analysis and parameter estimation

    Get PDF
    The Amaldi 10 Parallel Session C2 on gravitational wave (GW) search results, data analysis and parameter estimation included three lively sessions of lectures by 13 presenters, and 34 posters. The talks and posters covered a huge range of material, including results and analysis techniques for ground-based GW detectors, targeting anticipated signals from different astrophysical sources: compact binary inspiral, merger and ringdown; GW bursts from intermediate mass binary black hole mergers, cosmic string cusps, core-collapse supernovae, and other unmodeled sources; continuous waves from spinning neutron stars; and a stochastic GW background. There was considerable emphasis on Bayesian techniques for estimating the parameters of coalescing compact binary systems from the gravitational waveforms extracted from the data from the advanced detector network. This included methods to distinguish deviations of the signals from what is expected in the context of General Relativity

    Implementation of the frequency-modulated sideband search method for gravitational waves from low mass X-ray binaries

    Full text link
    We describe the practical implementation of the sideband search, a search for periodic gravitational waves from neutron stars in binary systems. The orbital motion of the source in its binary system causes frequency-modulation in the combination of matched filters known as the F\mathcal{F}-statistic. The sideband search is based on the incoherent summation of these frequency-modulated F\mathcal{F}-statistic sidebands. It provides a new detection statistic for sources in binary systems, called the C\mathcal{C}-statistic. The search is well suited to low-mass X-ray binaries, the brightest of which, called Sco X-1, is an ideal target candidate. For sources like Sco X-1, with well constrained orbital parameters, a slight variation on the search is possible. The extra orbital information can be used to approximately demodulate the data from the binary orbital motion in the coherent stage, before incoherently summing the now reduced number of sidebands. We investigate this approach and show that it improves the sensitivity of the standard Sco X-1 directed sideband search. Prior information on the neutron star inclination and gravitational wave polarization can also be used to improve upper limit sensitivity. We estimate the sensitivity of a Sco X-1 directed sideband search on 10 days of LIGO data and show that it can beat previous upper limits in current LIGO data, with a possibility of constraining theoretical upper limits using future advanced instruments.Comment: 20 pages, 5 figure

    End-to-end algorithm for hierarchical area searches for long-duration GW sources for GEO 600

    Get PDF
    We describe a hierarchical, highly parallel computer algorithm to perform searches for unknown sources of continuous gravitational waves -- spinning neutron stars in the Galaxy -- over wide areas of the sky and wide frequency bandwidths. We optimize the algorithm for an observing period of 4 months and an available computing power of 20 Gflops, in a search for neutron stars resembling millisecond pulsars. We show that, if we restrict the search to the galactic plane, the method will detect any star whose signal is stronger than 15 times the 1σ1\sigma noise level of a detector over that search period. Since on grounds of confidence the minimum identifiable signal should be about 10 times noise, our algorithm does only 50% worse than this and runs on a computer with achievable processing speed.Comment: 7 pages, for proceedings of Jan 1999 Moriond meeting "Gravitational Waves and Experimental Gravity

    A new data analysis framework for the search of continuous gravitational wave signals

    Full text link
    Continuous gravitational wave signals, like those expected by asymmetric spinning neutron stars, are among the most promising targets for LIGO and Virgo detectors. The development of fast and robust data analysis methods is crucial to increase the chances of a detection. We have developed a new and flexible general data analysis framework for the search of this kind of signals, which allows to reduce the computational cost of the analysis by about two orders of magnitude with respect to current procedures. This can correspond, at fixed computing cost, to a sensitivity gain of up to 10%-20%, depending on the search parameter space. Some possible applications are discussed, with a particular focus on a directed search for sources in the Galactic center. Validation through the injection of artificial signals in the data of Advanced LIGO first observational science run is also shown.Comment: 21 pages, 8 figure

    Searching for continuous gravitational wave signals: the hierarchical Hough transform algorithm

    Get PDF
    It is well known that matched filtering techniques cannot be applied for searching extensive parameter space volumes for continuous gravitational wave signals. This is the reason why alternative strategies are being pursued. Hierarchical strategies are best at investigating a large parameter space when there exist computational power constraints. Algorithms of this kind are being implemented by all the groups that are developing software for analyzing the data of the gravitational wave detectors that will come online in the next years. In this talk we will report about the hierarchical Hough transform method that the GEO 600 data analysis team at the Albert Einstein Institute is developing. The three step hierarchical algorithm has been described elsewhere. In this talk we will focus on some of the implementational aspects we are currently concerned with.Comment: 9 pages, 1 figure. To appear in the proceedings of the conference ``Gravitational waves: a challenge to theoretical astrophysics'', (June 5-9 2000, Trieste), ICTP Lecture Notes Serie

    Resampling to accelerate cross-correlation searches for continuous gravitational waves from binary systems

    Get PDF
    Continuous-wave (CW) gravitational waves (GWs) call for computationally-intensive methods. Low signal-to-noise ratio signals need templated searches with long coherent integration times and thus fine parameter-space resolution. Longer integration increases sensitivity. Low-mass x-ray binaries (LMXBs) such as Scorpius X-1 (Sco X-1) may emit accretion-driven CWs at strains reachable by current ground-based observatories. Binary orbital parameters induce phase modulation. This paper describes how resampling corrects binary and detector motion, yielding source-frame time series used for cross-correlation. Compared to the previous, detector-frame, templated cross-correlation method, used for Sco X-1 on data from the first Advanced LIGO observing run (O1), resampling is about 20x faster in the costliest, most-sensitive frequency bands. Speed-up factors depend on integration time and search setup. The speed could be reinvested into longer integration with a forecast sensitivity gain, 20 to 125 Hz median, of approximately 51%, or from 20 to 250 Hz, 11%, given the same per-band cost and setup. This paper's timing model enables future setup optimization. Resampling scales well with longer integration, and at 10x unoptimized cost could reach respectively 2.83x and 2.75x median sensitivities, limited by spin-wandering. Then an O1 search could yield a marginalized-polarization upper limit reaching torque-balance at 100 Hz. Frequencies from 40 to 140 Hz might be probed in equal observing time with 2x improved detectors.Comment: 28 pages, 7 figures, 3 table
    • …
    corecore