55 research outputs found

    Sub-channel Assignment, Power Allocation and User Scheduling for Non-Orthogonal Multiple Access Networks

    Full text link
    In this paper, we study the resource allocation and user scheduling problem for a downlink nonorthogonal multiple access network where the base station allocates spectrum and power resources to a set of users. We aim to jointly optimize the sub-channel assignment and power allocation to maximize the weighted total sum-rate while taking into account user fairness. We formulate the sub-channel allocation problem as equivalent to a many-to-many two-sided user-subchannel matching game in which the set of users and sub-channels are considered as two sets of players pursuing their own interests. We then propose a matching algorithm which converges to a two-side exchange stable matching after a limited number of iterations. A joint solution is thus provided to solve the sub-channel assignment and power allocation problems iteratively. Simulation results show that the proposed algorithm greatly outperforms the orthogonal multiple access scheme and a previous non-orthogonal multiple access scheme.Comment: Accepted as a regular paper by IEEE Transactions on Wireless Communication

    Resource Management Optimally in Non-Orthogonal Multiple Access Networks for Fifth-Generation by using Game-Theoretic

    Get PDF
    In this paper, several number of users were optimized in resource allocation management by applying the game theory User-sub-channel-Soap Matching Algorithm (USMA) in Non-Orthogonal Multiple Access (NOMA) for fifth-generation wireless networks. multiple access users can be increased up to 63 users in NOMA. This method reduces interference between users, which include costs, and resource to access for other users

    V2X Meets NOMA: Non-Orthogonal Multiple Access for 5G Enabled Vehicular Networks

    Full text link
    Benefited from the widely deployed infrastructure, the LTE network has recently been considered as a promising candidate to support the vehicle-to-everything (V2X) services. However, with a massive number of devices accessing the V2X network in the future, the conventional OFDM-based LTE network faces the congestion issues due to its low efficiency of orthogonal access, resulting in significant access delay and posing a great challenge especially to safety-critical applications. The non-orthogonal multiple access (NOMA) technique has been well recognized as an effective solution for the future 5G cellular networks to provide broadband communications and massive connectivity. In this article, we investigate the applicability of NOMA in supporting cellular V2X services to achieve low latency and high reliability. Starting with a basic V2X unicast system, a novel NOMA-based scheme is proposed to tackle the technical hurdles in designing high spectral efficient scheduling and resource allocation schemes in the ultra dense topology. We then extend it to a more general V2X broadcasting system. Other NOMA-based extended V2X applications and some open issues are also discussed.Comment: Accepted by IEEE Wireless Communications Magazin

    Channel Assignment in Uplink Wireless Communication using Machine Learning Approach

    Get PDF
    This letter investigates a channel assignment problem in uplink wireless communication systems. Our goal is to maximize the sum rate of all users subject to integer channel assignment constraints. A convex optimization based algorithm is provided to obtain the optimal channel assignment, where the closed-form solution is obtained in each step. Due to high computational complexity in the convex optimization based algorithm, machine learning approaches are employed to obtain computational efficient solutions. More specifically, the data are generated by using convex optimization based algorithm and the original problem is converted to a regression problem which is addressed by the integration of convolutional neural networks (CNNs), feed-forward neural networks (FNNs), random forest and gated recurrent unit networks (GRUs). The results demonstrate that the machine learning method largely reduces the computation time with slightly compromising of prediction accuracy
    • …
    corecore