3 research outputs found

    A miniature, lowpower , intelligent sensor node for persistent acoustic surveillance

    Get PDF
    ABSTRACT The desire for persistent, long term surveillance and covertness places severe constraints on the power consumption of a sensor node. To achieve the desired endurance while minimizing the size of the node, it is imperative to use application-specific integrated circuits (ASICs) that deliver the required performance with maximal power efficiency while minimizing the amount of communication bandwidth needed. This paper reviews our ongoing effort to integrate several micropower devices for low-power wake-up detection, blind source separation and localization and pattern classification, and demonstrate the utility of the system in relevant surveillance applications. The capabilities of each module are presented in detail along with performance statistics measured during recent experiments

    Sub-microwatt analog vlsi support vector machine for pattern classification and sequence estimation

    No full text
    An analog system-on-chip for kernel-based pattern classification and sequence estimation is presented. State transition probabilities conditioned on input data are generated by an integrated support vector machine. Dot product based kernels and support vector coefficients are implemented in analog programmable floating gate translinear circuits, and probabilities are propagated and normalized using sub-threshold current-mode circuits. A 14-input, 24-state, and 720-support vector forward decoding kernel machine is integrated on a 3mm×3mm chip in 0.5µm CMOS technology. Experiments with the processor trained for speaker verification and phoneme sequence estimation demonstrate real-time recognition accuracy at par with floating-point software, at sub-microwatt power.
    corecore