13,232 research outputs found

    A joint motion & disparity motion estimation technique for 3D integral video compression using evolutionary strategy

    Get PDF
    3D imaging techniques have the potential to establish a future mass-market in the fields of entertainment and communications. Integral imaging, which can capture true 3D color images with only one camera, has been seen as the right technology to offer stress-free viewing to audiences of more than one person. Just like any digital video, 3D video sequences must also be compressed in order to make it suitable for consumer domain applications. However, ordinary compression techniques found in state-of-the-art video coding standards such as H.264, MPEG-4 and MPEG-2 are not capable of producing enough compression while preserving the 3D clues. Fortunately, a huge amount of redundancies can be found in an integral video sequence in terms of motion and disparity. This paper discusses a novel approach to use both motion and disparity information to compress 3D integral video sequences. We propose to decompose the integral video sequence down to viewpoint video sequences and jointly exploit motion and disparity redundancies to maximize the compression. We further propose an optimization technique based on evolutionary strategies to minimize the computational complexity of the joint motion disparity estimation. Experimental results demonstrate that Joint Motion and Disparity Estimation can achieve over 1 dB objective quality gain over normal motion estimation. Once combined with Evolutionary strategy, this can achieve up to 94% computational cost saving

    Dynamical Scaling of Polymerized Membranes

    Full text link
    Monte Carlo simulations have been performed to analyze the sub-diffusion dynamics of a tagged monomer in self-avoiding polymerized membranes in the flat phase. By decomposing the mean square displacement into the out-of-plane (∄\parallel) and the in-plane (⊄\perp) components, we obtain good data collapse with two distinctive diffusion exponents 2α∄=0.36±0.012 \alpha_{\parallel} = 0.36 \pm 0.01 and 2α⊄=0.21±0.012 \alpha_{\perp} = 0.21 \pm 0.01, and the roughness exponents ζ∄=0.6±0.05\zeta_{\parallel} = 0.6 \pm 0.05 and ζ⊄=0.25±0.05\zeta_{\perp} = 0.25 \pm 0.05 , respectively for each component. Their values are consistent with the relation from the rotational symmetry. We derive the generalized Langevin equations to describe the sub-diffusional behaviors of a tagged monomer in the intermediate time regime where the collective effect of internal modes in the membrane dominate the dynamics to produce negative memory kernels with a power-law. We also briefly discuss how the long-range hydrodynamic interactions alter the exponents.Comment: 6 pages, 5 figures, (Europhysics Letters, in press

    Non-linear Temperature Dependence of Resistivity in Single Crystalline Ag5_5Pb2_2O6_6

    Get PDF
    We measured electrical resistivity, specific heat and magnetic susceptibility of single crystals of highly conductive oxide Ag_5Pb_2O_6, which has a layered structure containing a Kagome lattice. Both the out-of-plane and in-plane resistivity show T^2 dependence in an unusually wide range of temperatures up to room temperature. This behavior cannot be accounted for either by electron correlation or by electron-phonon scattering with high frequency optic phonons. In addition, a phase transition with a large diamagnetic signal was found in the ac susceptibility, which strongly suggests the existence of a superconducting phase below 48 mK.Comment: 5 pages, 5 figures; accepted for publication in Physcal Review B; Revised version: small correction in the caption of Fig.

    Data analysis of gravitational-wave signals from spinning neutron stars. V. A narrow-band all-sky search

    Full text link
    We present theory and algorithms to perform an all-sky coherent search for periodic signals of gravitational waves in narrow-band data of a detector. Our search is based on a statistic, commonly called the F\mathcal{F}-statistic, derived from the maximum-likelihood principle in Paper I of this series. We briefly review the response of a ground-based detector to the gravitational-wave signal from a rotating neuron star and the derivation of the F\mathcal{F}-statistic. We present several algorithms to calculate efficiently this statistic. In particular our algorithms are such that one can take advantage of the speed of fast Fourier transform (FFT) in calculation of the F\mathcal{F}-statistic. We construct a grid in the parameter space such that the nodes of the grid coincide with the Fourier frequencies. We present interpolation methods that approximately convert the two integrals in the F\mathcal{F}-statistic into Fourier transforms so that the FFT algorithm can be applied in their evaluation. We have implemented our methods and algorithms into computer codes and we present results of the Monte Carlo simulations performed to test these codes.Comment: REVTeX, 20 pages, 8 figure

    Turbulence and turbulent pattern formation in a minimal model for active fluids

    Full text link
    Active matter systems display a fascinating range of dynamical states, including stationary patterns and turbulent phases. While the former can be tackled with methods from the field of pattern formation, the spatio-temporal disorder of the active turbulence phase calls for a statistical description. Borrowing techniques from turbulence theory, we here establish a quantitative description of correlation functions and spectra of a minimal continuum model for active turbulence. Further exploring the parameter space, we also report on a surprising type of turbulence-driven pattern formation far beyond linear onset: the emergence of a dynamic hexagonal vortex lattice state after an extended turbulent transient, which can only be explained taking into account turbulent energy transfer across scales.Comment: Supplemental videos available at https://youtu.be/gbf6cRho03w https://youtu.be/n0qUUhAUJFQ https://youtu.be/LGmamkM012

    The water supercooled regime as described by four common water models

    Get PDF
    The temperature scale of simple water models in general does not coincide with the natural one. Therefore, in order to make a meaningful evaluation of different water models a temperature rescaling is necessary. In this paper we introduce a rescaling using the melting temperature and the temperature corresponding to the maximum of the heat capacity to evaluate four common water models (TIP4P-Ew, TIP4P-2005, TIP5P-Ew and Six-Sites) in the supercooled regime. Although all the models show the same general qualitative behavior, the TIP5P-Ew appears as the best representation of the supercooled regime when the rescaled temperature is used. We also analyze, using thermodynamic arguments, the critical nucleus size for ice growth. Finally, we speculate on the possible reasons why atomistic models do not usually crystalize while the coarse grained mW model do crystallize.Comment: 8 pages, 8 figure
    • 

    corecore