3,014 research outputs found

    Mean value coordinates–based caricature and expression synthesis

    Get PDF
    We present a novel method for caricature synthesis based on mean value coordinates (MVC). Our method can be applied to any single frontal face image to learn a specified caricature face pair for frontal and 3D caricature synthesis. This technique only requires one or a small number of exemplar pairs and a natural frontal face image training set, while the system can transfer the style of the exemplar pair across individuals. Further exaggeration can be fulfilled in a controllable way. Our method is further applied to facial expression transfer, interpolation, and exaggeration, which are applications of expression editing. Additionally, we have extended our approach to 3D caricature synthesis based on the 3D version of MVC. With experiments we demonstrate that the transferred expressions are credible and the resulting caricatures can be characterized and recognized

    Caricature Synthesis Based on Mean Value Coordinates

    Get PDF
    In this paper, a novel method for caricature synthesis is developed based on mean value coordinates (MVC). Our method can be applied to any single frontal face image to learn a specified caricature face exemplar pair for frontal and side view caricature synthesis. The technique only requires one or a small number of caricature face pairs and a natural frontal face training set, while the system can transfer the style of the exemplar pair across individuals. Further exaggeration can be fulfilled in a controllable way. Our method is further extended to facial expression transfer, interpolation and exaggeration, which are applications of expression editing. Moreover, the deformation equation of MVC is modified to handle the case of polygon intersections and applied to lateral view caricature synthesis from a single frontal view image. Using experiments we demonstrate that the transferred expressions are credible and the resulting caricatures can be characterized and recognized

    That's What I Said: Fully-Controllable Talking Face Generation

    Full text link
    The goal of this paper is to synthesise talking faces with controllable facial motions. To achieve this goal, we propose two key ideas. The first is to establish a canonical space where every face has the same motion patterns but different identities. The second is to navigate a multimodal motion space that only represents motion-related features while eliminating identity information. To disentangle identity and motion, we introduce an orthogonality constraint between the two different latent spaces. From this, our method can generate natural-looking talking faces with fully controllable facial attributes and accurate lip synchronisation. Extensive experiments demonstrate that our method achieves state-of-the-art results in terms of both visual quality and lip-sync score. To the best of our knowledge, we are the first to develop a talking face generation framework that can accurately manifest full target facial motions including lip, head pose, and eye movements in the generated video without any additional supervision beyond RGB video with audio

    Modeling Caricature Expressions by 3D Blendshape and Dynamic Texture

    Full text link
    The problem of deforming an artist-drawn caricature according to a given normal face expression is of interest in applications such as social media, animation and entertainment. This paper presents a solution to the problem, with an emphasis on enhancing the ability to create desired expressions and meanwhile preserve the identity exaggeration style of the caricature, which imposes challenges due to the complicated nature of caricatures. The key of our solution is a novel method to model caricature expression, which extends traditional 3DMM representation to caricature domain. The method consists of shape modelling and texture generation for caricatures. Geometric optimization is developed to create identity-preserving blendshapes for reconstructing accurate and stable geometric shape, and a conditional generative adversarial network (cGAN) is designed for generating dynamic textures under target expressions. The combination of both shape and texture components makes the non-trivial expressions of a caricature be effectively defined by the extension of the popular 3DMM representation and a caricature can thus be flexibly deformed into arbitrary expressions with good results visually in both shape and color spaces. The experiments demonstrate the effectiveness of the proposed method.Comment: Accepted by the 28th ACM International Conference on Multimedia (ACM MM 2020

    Real-Time Cleaning and Refinement of Facial Animation Signals

    Full text link
    With the increasing demand for real-time animated 3D content in the entertainment industry and beyond, performance-based animation has garnered interest among both academic and industrial communities. While recent solutions for motion-capture animation have achieved impressive results, handmade post-processing is often needed, as the generated animations often contain artifacts. Existing real-time motion capture solutions have opted for standard signal processing methods to strengthen temporal coherence of the resulting animations and remove inaccuracies. While these methods produce smooth results, they inherently filter-out part of the dynamics of facial motion, such as high frequency transient movements. In this work, we propose a real-time animation refining system that preserves -- or even restores -- the natural dynamics of facial motions. To do so, we leverage an off-the-shelf recurrent neural network architecture that learns proper facial dynamics patterns on clean animation data. We parametrize our system using the temporal derivatives of the signal, enabling our network to process animations at any framerate. Qualitative results show that our system is able to retrieve natural motion signals from noisy or degraded input animation.Comment: ICGSP 2020: Proceedings of the 2020 The 4th International Conference on Graphics and Signal Processin
    • …
    corecore