2 research outputs found

    Monitoring land surface deformation using persistent scatterers interferometric synthetic aperture radar technique

    Get PDF
    Land subsidence is one of the major hazards occurring globally due to several reasons including natural and human activities. The effect of land subsidence depends on the extent and severity. The consequences of this hazard can be seen in many forms including damaged of infrastructures and loss of human lives. Although land subsidence is a global problem, but it is very common in urban and sub urban areas especially in rapidly developing countries. This problem needs to be monitored effectively. Several techniques such as land surveying, aerial photogrammetry and Global Positioning System (GPS) can be used to monitor or detect the subsidence effectively but these techniques are mostly expensive and time consuming especially for large area. In recent decades, Interferometric Synthetic Aperture Radar (InSAR) technique has been used widely for the monitoring of land subsidence successfully although this technique has several limitations due to temporal decorrelation, atmospheric effects and so on. However, the uncertainties related to InSAR technique have been reduced significantly with the recent Persistent Scatterers Interferometric Synthetic Aperture Radar (PSInSAR) technique which utilized a stack of interferograms generated from several radar images to estimate deformation by finding a bunch of stable points. This study investigates the surface deformation focusing on Kuala Lumpur, a rapidly growing city and Selangor using PSInSAR technique with a set of ALOS PALSAR images from 2007 to 2011. The research methodology consists of several steps of image processing that incudes i) generation of Differential Interferometric Synthetic Aperture Radar (DInSAR), ii) selection of Persistent Scatterers (PS) points, iii) removal of noise, iv) optimization of PS point selection, and v) generation of time series deformation map. However, special consideration was given to optimize the PS selection process using two master images. Results indicate a complete variation of mean line-of-sight (LOS) velocities over the study area. Stable areas (mean LOS=1.1 mm/year) were mostly found in the urban center of Kuala Lumpur, while medium rate of LOS (from 20 mm/year to 30 mm/year) was observed in the south west area in Kuala Langat and Sepang districts. The infrastructures in Kuala Lumpur are mostly stable except in Kuala Lumpur International Airport (KLIA) where a significant subsidence was detected (28.7 mm/year). Meanwhile, other parts of the study area such as Hulu Langat, Petaling Jaya and Klang districts show a very low and non-continuous movement (LOS < 20 mm/year), although comparatively higher subsidence rate (28 mm/year) was detected in the mining area. As conclusion, PSInSAR technique has a potential to monitor subsidence in urban and sub urban areas, but optimization of PS selection processing is necessary in order to reduce the noise and get better estimation accuracy

    Elevation and Deformation Extraction from TomoSAR

    Get PDF
    3D SAR tomography (TomoSAR) and 4D SAR differential tomography (Diff-TomoSAR) exploit multi-baseline SAR data stacks to provide an essential innovation of SAR Interferometry for many applications, sensing complex scenes with multiple scatterers mapped into the same SAR pixel cell. However, these are still influenced by DEM uncertainty, temporal decorrelation, orbital, tropospheric and ionospheric phase distortion and height blurring. In this thesis, these techniques are explored. As part of this exploration, the systematic procedures for DEM generation, DEM quality assessment, DEM quality improvement and DEM applications are first studied. Besides, this thesis focuses on the whole cycle of systematic methods for 3D & 4D TomoSAR imaging for height and deformation retrieval, from the problem formation phase, through the development of methods to testing on real SAR data. After DEM generation introduction from spaceborne bistatic InSAR (TanDEM-X) and airborne photogrammetry (Bluesky), a new DEM co-registration method with line feature validation (river network line, ridgeline, valley line, crater boundary feature and so on) is developed and demonstrated to assist the study of a wide area DEM data quality. This DEM co-registration method aligns two DEMs irrespective of the linear distortion model, which improves the quality of DEM vertical comparison accuracy significantly and is suitable and helpful for DEM quality assessment. A systematic TomoSAR algorithm and method have been established, tested, analysed and demonstrated for various applications (urban buildings, bridges, dams) to achieve better 3D & 4D tomographic SAR imaging results. These include applying Cosmo-Skymed X band single-polarisation data over the Zipingpu dam, Dujiangyan, Sichuan, China, to map topography; and using ALOS L band data in the San Francisco Bay region to map urban building and bridge. A new ionospheric correction method based on the tile method employing IGS TEC data, a split-spectrum and an ionospheric model via least squares are developed to correct ionospheric distortion to improve the accuracy of 3D & 4D tomographic SAR imaging. Meanwhile, a pixel by pixel orbit baseline estimation method is developed to address the research gaps of baseline estimation for 3D & 4D spaceborne SAR tomography imaging. Moreover, a SAR tomography imaging algorithm and a differential tomography four-dimensional SAR imaging algorithm based on compressive sensing, SAR interferometry phase (InSAR) calibration reference to DEM with DEM error correction, a new phase error calibration and compensation algorithm, based on PS, SVD, PGA, weighted least squares and minimum entropy, are developed to obtain accurate 3D & 4D tomographic SAR imaging results. The new baseline estimation method and consequent TomoSAR processing results showed that an accurate baseline estimation is essential to build up the TomoSAR model. After baseline estimation, phase calibration experiments (via FFT and Capon method) indicate that a phase calibration step is indispensable for TomoSAR imaging, which eventually influences the inversion results. A super-resolution reconstruction CS based study demonstrates X band data with the CS method does not fit for forest reconstruction but works for reconstruction of large civil engineering structures such as dams and urban buildings. Meanwhile, the L band data with FFT, Capon and the CS method are shown to work for the reconstruction of large manmade structures (such as bridges) and urban buildings
    corecore