945 research outputs found

    Analysis Of A Dual Scissored-Pair,variable-Speed, Control Moment Gyroscope Driven Spherical Robot

    Get PDF
    The objective of this research is to compare barycenter offset based designs of spherical robots to control moment gyroscope (CMG) based designs in order to determine which approach is most effective. The first objective was to develop a list of current state of the art designs in order to gain an overall understanding of what the obstacles in this area of research were. The investigation showed that barycenter offset designs can produce a low, continuous output torque, whereas CMG based designs can usually only produce a high, momentary output torque. The second objective was to develop a CMG based design that has the potential to outperform current state barycenter offset based designs. A design consisting of a dual, scissored-pair CMG (DSP-VSCMG) configuration was proposed and the dynamics derived from first principles. The third objective was to develop a set of equations that can describe performance characteristics of spherical robots . The equations that were modeled were power consumption, translational velocity, maximum incline plane, step size from rest, as well as CMG inertias and geometries. The fourth objective was to perform a series of parametric analysis using the developed equation set to compare barycenter and DSP-VSCMG based designs in a controlled environment. The analysis showed that DSP-VSCMG based designs can be more agile than barycenter designs, but require more power to do so

    Design of a Spherical UGV for Space Exploration

    Get PDF
    The paper presents the design of a spherical UGV (Unmanned Ground Vehicle) for exploration of critical, unknown or extended areas, such as planetary surfaces. Spherical robots are an emerging class of devices whose shape brings many advantages, e.g. omni-directionality, sealed internal environment and protection from overturning. Many dedicated sensors can be safely placed inside the sphere and the robot can roll in any direction without getting stuck in singular configurations. Specifically, the proposed UGV is thought to collect images and environmental data, so required sensors are firstly discussed to evaluate in sequence of the payload in terms of size and energy consumption. The most effective drive mechanism is selected considering several possible concepts and carrying a trade-off process based on the requirements for a space mission. The optimal solution involves the use of a single pendulum: a hanging mass, attached to the central shaft of the sphere, is shifted to produce rolling. The design issues due to the selected mechanism are discussed, showing the effect of design parameters on the expected performance. For instance, the barycenter offset from the center of the sphere plays a crucial role and affects the maximum step or inclines that can be overcomed. Therefore, the pre-design phase is conducted by discussing the functional design of the robot and introducing a differential mechanism for driving and steering. A quasi omni-directionality is achieved and the mechanical components, opportunely designed according to the loads acting on the device, are arranged to match the mission requirements. Moreover, the mechatronic integration is discussed: microcontrollers, drive electronics, sensors and batteries are sized in order to reach 3 hours of continuous operation. The multibody system is finally modelled in Matlab-Simscape to verify the mechanism for the UGV testing in specific cases. Results show that a suitable layout is a 0.5 m diameter spherical UGV with a steel main structure, mounting 2 DC motors that activate a bevel gear by means of pulleys and timing belts. The spherical shell, with the internal mechanism and electronics, has a total mass of 25 kg and from standstill it can climb up to 15 degrees inclines or steps up to 25 mm, as proved by Matlab simulations. Future works will focus on the realization of the physical prototype, as well as navigation and control strategies

    Feedback Control of an Exoskeleton for Paraplegics: Toward Robustly Stable Hands-free Dynamic Walking

    Get PDF
    This manuscript presents control of a high-DOF fully actuated lower-limb exoskeleton for paraplegic individuals. The key novelty is the ability for the user to walk without the use of crutches or other external means of stabilization. We harness the power of modern optimization techniques and supervised machine learning to develop a smooth feedback control policy that provides robust velocity regulation and perturbation rejection. Preliminary evaluation of the stability and robustness of the proposed approach is demonstrated through the Gazebo simulation environment. In addition, preliminary experimental results with (complete) paraplegic individuals are included for the previous version of the controller.Comment: Submitted to IEEE Control System Magazine. This version addresses reviewers' concerns about the robustness of the algorithm and the motivation for using such exoskeleton

    Development, Control, and Empirical Evaluation of the Six-Legged Robot SpaceClimber Designed for Extraterrestrial Crater Exploration

    Get PDF
    In the recent past, mobile robots played an important role in the field of extraterrestrial surface exploration. Unfortunately, the currently available space exploration rovers do not provide the necessary mobility to reach scientifically interesting places in rough and steep terrain like boulder fields and craters. Multi-legged robots have proven to be a good solution to provide high mobility in unstructured environments. However, space missions place high demands on the system design, control, and performance which are hard to fulfill with such kinematically complex systems. This thesis focuses on the development, control, and evaluation of a six-legged robot for the purpose of lunar crater exploration considering the requirements arising from the envisaged mission scenario. The performance of the developed system is evaluated and optimized based on empirical data acquired in significant and reproducible experiments performed in a laboratory environment in order to show thecapability of the system to perform such a task and to provide a basis for the comparability with other mobile robotic solutions

    Design of a glass climbing robot

    Get PDF
    Wall-climbing robot is very useful in substituting human labors in dangerous and repetitive tasks like cleaning glass window in high building, maintenance, and inspection in industrial storage tank. A success in developing a climbing robot presents a huge economic benefit. This project aims to design a remote-controlled climbing robot that is able to operate on a vertical glass window. An effective adhesion mechanism using suction cups and solenoid valves had been designed. The locomotion mechanisms design based on a crossed-bar mechanism, utilizing pinion and rack. Detail drawings of the design and the robot specification had been finalized. A prototype was fabricated to demonstrate the design concept and its functionality. Control system of the robot, which includes an electrical circuit integrated with a C program, had been developed. Finally the functionality of the fabricated prototype was tested
    • …
    corecore