
Wayne State University

Wayne State University Dissertations

1-1-2014

Analysis Of A Dual Scissored-Pair,variable-Speed,
Control Moment Gyroscope Driven Spherical
Robot
Richard Chase
Wayne State University,

Follow this and additional works at: http://digitalcommons.wayne.edu/oa_dissertations

Part of the Electrical and Computer Engineering Commons, Mechanical Engineering Commons,
and the Robotics Commons

This Open Access Dissertation is brought to you for free and open access by DigitalCommons@WayneState. It has been accepted for inclusion in
Wayne State University Dissertations by an authorized administrator of DigitalCommons@WayneState.

Recommended Citation
Chase, Richard, "Analysis Of A Dual Scissored-Pair,variable-Speed, Control Moment Gyroscope Driven Spherical Robot" (2014).
Wayne State University Dissertations. Paper 878.

http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/266?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/293?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/264?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages
http://digitalcommons.wayne.edu/oa_dissertations/878?utm_source=digitalcommons.wayne.edu%2Foa_dissertations%2F878&utm_medium=PDF&utm_campaign=PDFCoverPages


ANALYSIS OF A DUAL SCISSORED-PAIR,VARIABLE-SPEED,
CONTROL MOMENT GYROSCOPE DRIVEN SPHERICAL ROBOT

by

RICHARD CHASE

DISSERTATION

Submitted to the Graduate School

of Wayne State University,

Detroit, Michigan

in partial fulfillment of the requirements

for the degree of

DOCTOR OF PHILOSOPHY

2014

MAJOR: ELECTRICAL ENGINEERING

Approved by:

Advisor Date



DEDICATION

The exports of Libya are numerous in amount. One thing they export is corn, or as the

Indians call it, “maize”. Another famous Indian was “Crazy Horse”. In conclusion,

Libya is a land of contrast. Thank you.

ii



TABLE OF CONTENTS

Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Chapter 1: Spherical Robots: A Review . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Barycenter Offset (BCO) . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2.1 Implementations of Governing Principle . . . . . . . . . . . . . . 5

Hamster Ball . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

Internal Drive Unit (IDU) . . . . . . . . . . . . . . . . . . . . . . 6

Universal Wheel . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

Pendulum Driven . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Double Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

Notable Enhancements . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Shell Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.3.1 Implementations of Governing Principle . . . . . . . . . . . . . . 16

Pressurized Air Bladders . . . . . . . . . . . . . . . . . . . . . . . 16

Shape Memory Alloys . . . . . . . . . . . . . . . . . . . . . . . . 17

1.4 Conservation of Angular Momentum . . . . . . . . . . . . . . . . . . . . 18

1.4.1 Implementations . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Balancing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Uni-Dimensional COAM . . . . . . . . . . . . . . . . . . . . . . . 19

Tri-Dimensional COAM . . . . . . . . . . . . . . . . . . . . . . . 21

Scissored-Pairs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

1.5 Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . 24

iii



Chapter 2: Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2 Fundamental Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3 Physics of a Control Moment Gyroscope . . . . . . . . . . . . . . . . . . 30

2.4 Derivation of Key Equations . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5 Torque in Ideal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.6 Changing Torque in Ideal Conditions . . . . . . . . . . . . . . . . . . . . 43

2.7 Controls in Ideal Conditions . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.8 Peak Torque in Ideal Conditions . . . . . . . . . . . . . . . . . . . . . . . 49

2.9 Potential Average Torque in Ideal Conditions . . . . . . . . . . . . . . . 50

2.10 Torque in Non-Ideal Conditions . . . . . . . . . . . . . . . . . . . . . . . 51

2.11 Controls in Non-Ideal Conditions . . . . . . . . . . . . . . . . . . . . . . 53

2.12 Dual SP-VSCMG Configurations . . . . . . . . . . . . . . . . . . . . . . 56

2.12.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Chapter 3: Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2 Key Elements to Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Description of the Three Types of Models . . . . . . . . . . . . . . . . . 65

3.4 Modeling Power Consumption . . . . . . . . . . . . . . . . . . . . . . . . 67

3.5 In-Depth Look at Power Consumption Model . . . . . . . . . . . . . . . 69

3.6 Modeling CMG Power Usage . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.7 Modeling Translational Velocity . . . . . . . . . . . . . . . . . . . . . . . 72

3.8 Maximum Inclined Plane . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.9 Modeling Maximum Step Size From Rest . . . . . . . . . . . . . . . . . . 76

3.10 Defining Volumes for Parametric Analysis . . . . . . . . . . . . . . . . . 79

3.10.1 Determining Inertia of CMG . . . . . . . . . . . . . . . . . . . . . 79

3.10.2 Determining Bounding Sphere Size . . . . . . . . . . . . . . . . . 81

3.11 Defining Barycenter Offset Models . . . . . . . . . . . . . . . . . . . . . . 82

iv



3.12 Determining CMG Motor Torque . . . . . . . . . . . . . . . . . . . . . . 84

3.13 Process for Parametric Analysis . . . . . . . . . . . . . . . . . . . . . . . 87

3.14 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

Chapter 4: Comparison and Results of Spherical Robot Designs . . . . . . . . 91

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.2 Initial Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.3 Rotor Size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.4 Trade Off Between ωr and ωg . . . . . . . . . . . . . . . . . . . . . . . . 96

4.5 Material Density . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

4.6 Conclusions and Results of Parametric Analysis . . . . . . . . . . . . . . 100

4.7 Consideration of Shell Size . . . . . . . . . . . . . . . . . . . . . . . . . . 102

4.8 Effects of Non-Ideal Scenarios . . . . . . . . . . . . . . . . . . . . . . . . 104

4.9 Design Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.10 Conclusions Between Models . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.11 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.12 Thesis Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

Autobiographical Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

v



LIST OF TABLES

Table 1: Variable List . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

Table 1.1: Table of Taxonomy . . . . . . . . . . . . . . . . . . . . . . . . . 25

Table 4.1: Initial Geometric Constraints . . . . . . . . . . . . . . . . . . . 93

Table 4.2: Initial Design Constraints . . . . . . . . . . . . . . . . . . . . . 93

Table 4.3: Initial Performance Characteristics . . . . . . . . . . . . . . . . 94

Table 4.4: Performance Characteristics from rrotor Adjustment . . . . . . . 95

Table 4.5: Performance Characteristics with Variable wg, Single Pair Baseline 96

Table 4.6: Individually Optimized ωr and ωg for Each Design . . . . . . . . 97

Table 4.7: ∆’s After ωr and ωg Adjustments . . . . . . . . . . . . . . . . . 98

Table 4.8: Performance Characteristics with ρ adjustment . . . . . . . . . . 99

Table 4.9: Performance ∆’s after ρ adjustment . . . . . . . . . . . . . . . . 99

Table 4.10: Optimized Geometric Constraints . . . . . . . . . . . . . . . . . 100

Table 4.11: Optimized Design Constraints (Single Pair - Ideal) . . . . . . . . 100

Table 4.12: Optimized Design Constraints (Dual Pair - Ideal) . . . . . . . . 101

Table 4.13: Optimized Performance Characteristics . . . . . . . . . . . . . . 101

Table 4.14: ∆ Performance Characteristics . . . . . . . . . . . . . . . . . . . 101

vi



LIST OF FIGURES

Figure 1.1: Cross Section of Pendulum Driven Spherical Robot . . . . . . . 4

Figure 1.2: Hamster Ball Prototype . . . . . . . . . . . . . . . . . . . . . . 6

Figure 1.3: Spring-Loaded Design . . . . . . . . . . . . . . . . . . . . . . . . 7

Figure 1.4: Structure of BHQ-3 . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 1.5: HIT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1.6: Rotudus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

Figure 1.7: Roball’s Steering Mechanism . . . . . . . . . . . . . . . . . . . . 10

Figure 1.8: Dual pendulum design . . . . . . . . . . . . . . . . . . . . . . . 11

Figure 1.9: Kisbot II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

Figure 1.10: Robot with Traversing Masses . . . . . . . . . . . . . . . . . . . 13

Figure 1.11: Reconfigurable Robot . . . . . . . . . . . . . . . . . . . . . . . . 14

Figure 1.12: Kisbot I Movements . . . . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.13: Jumping Spherical Robot . . . . . . . . . . . . . . . . . . . . . . 15

Figure 1.14: Inflatable Bladder Design . . . . . . . . . . . . . . . . . . . . . . 16

Figure 1.15: Inflatable Bladder Design, Breakaway . . . . . . . . . . . . . . . 17

Figure 1.16: Locomotion by SMA Coil Deformation . . . . . . . . . . . . . . 18

Figure 1.17: Gyrover Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . 20

Figure 1.18: Rotor-Based Bob Design . . . . . . . . . . . . . . . . . . . . . . 20

Figure 1.19: Diametrically Opposed Rotor Pair . . . . . . . . . . . . . . . . . 21

Figure 1.20: BHQ-5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

Figure 1.21: Scissored-Pair . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Figure 1.22: Robot with Scissored-Pair . . . . . . . . . . . . . . . . . . . . . 23

Figure 2.1: 2-D and 3-D Image of Fundamental Constraint . . . . . . . . . . 28

Figure 2.2: Cross-Section of Hypothetical Tube System . . . . . . . . . . . . 30

Figure 2.3: Control Moment Gyroscope Rotation Vectors . . . . . . . . . . . 31

vii



Figure 2.4: Scissored-Pair CMG Torque Vectors . . . . . . . . . . . . . . . . 32

Figure 2.5: Scissored-pair coordinate frames . . . . . . . . . . . . . . . . . . 33

Figure 2.6: Scissored-pair system at t0 . . . . . . . . . . . . . . . . . . . . . 34

Figure 2.7: Scissored-pair system at t1 . . . . . . . . . . . . . . . . . . . . . 35

Figure 2.8: Body-fixed rotations, single pair . . . . . . . . . . . . . . . . . . 37

Figure 2.9: Body-fixed rotations, single pair . . . . . . . . . . . . . . . . . . 37

Figure 2.10: Body-fixed rotations, single pair . . . . . . . . . . . . . . . . . . 38

Figure 2.11: Sinusoidal Nature of Scissored-Pair . . . . . . . . . . . . . . . . 43

Figure 2.12: Absolute Value of Scissored-Pair Torque . . . . . . . . . . . . . 44

Figure 2.13: Rectified Plot of Scissored-Pair Torque . . . . . . . . . . . . . . 45

Figure 2.14: Control Option 1 of Scissored-Pair CMG . . . . . . . . . . . . . 46

Figure 2.15: Control Option 3 of Scissored-Pair CMG . . . . . . . . . . . . . 47

Figure 2.16: Ideal ∆ State . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

Figure 2.17: Ideal Γ State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Figure 2.18: Ideal Γ State . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Figure 2.19: Scissored-Pair ∆ State . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 2.20: Scissored-Pair Λ State . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 2.21: Scissored-Pair Λ State . . . . . . . . . . . . . . . . . . . . . . . 55

Figure 2.22: Dual Scissored-pair system . . . . . . . . . . . . . . . . . . . . . 57

Figure 2.23: ∆2 States with Varying Offsets . . . . . . . . . . . . . . . . . . . 59

Figure 2.24: Ideal ∆2 state, 0 offset . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 2.25: Ideal ∆2 state, π/2 offset . . . . . . . . . . . . . . . . . . . . . . 60

Figure 3.1: Layout of Scissored-Pair . . . . . . . . . . . . . . . . . . . . . . 64

Figure 3.2: Basic Barycenter Offset Model . . . . . . . . . . . . . . . . . . . 65

Figure 3.3: SP-VSCMG model . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 3.4: Dual SP-VSCMG Model . . . . . . . . . . . . . . . . . . . . . . 67

Figure 3.5: Spherical Robot on an Incline . . . . . . . . . . . . . . . . . . . 73

viii



Figure 3.6: Behavior of y = arcsinx . . . . . . . . . . . . . . . . . . . . . . 75

Figure 3.7: Robot Ascending a Step . . . . . . . . . . . . . . . . . . . . . . 76

Figure 3.8: Forces Diagram of Robot Ascending a Step . . . . . . . . . . . . 77

Figure 3.9: Step Size vs Barycenter Offset . . . . . . . . . . . . . . . . . . . 79

Figure 3.10: A CMG Bound by a Sphere . . . . . . . . . . . . . . . . . . . . 80

Figure 3.11: Cross Section of Bounding Spheres . . . . . . . . . . . . . . . . 82

Figure 3.12: Torque Output Based on Bob Radius . . . . . . . . . . . . . . . 83

Figure 3.13: Different Bob Sizes of Barycenter Offset Designs . . . . . . . . . 84

Figure 3.14: Non-Ideal Behavior of Λ2 State . . . . . . . . . . . . . . . . . . 85

Figure 3.15: Non-Ideal Characteristics of CMG Motor . . . . . . . . . . . . . 86

Figure 3.16: Flowchart of Parametric Analysis . . . . . . . . . . . . . . . . . 89

Figure 4.1: Photo of Spherical Robot Models . . . . . . . . . . . . . . . . . 92

Figure 4.2: Effects of adjusting rrotor/rbound . . . . . . . . . . . . . . . . . . 95

Figure 4.3: Correlation between ωr and ωg . . . . . . . . . . . . . . . . . . . 97

Figure 4.4: Effects of adjusting ρbob and ρcmg . . . . . . . . . . . . . . . . . 99

Figure 4.5: Effects of adjusting rshell . . . . . . . . . . . . . . . . . . . . . . 102

Figure 4.6: Effects of adjusting rshell on φinc . . . . . . . . . . . . . . . . . . 103

Figure 4.7: Effects of adjusting rshell on Pcycle . . . . . . . . . . . . . . . . . 104

Figure 4.8: CMG Module Considerations . . . . . . . . . . . . . . . . . . . . 105

Figure 4.9: Battery Module Considerations . . . . . . . . . . . . . . . . . . 106

ix



VARIABLE LIST

Variable Desription (All units are in SI)
αn Angular acceleration described by n
avg Subscript for ”average”
∆ Steady state oscillation of a scissored-pair system
∆2 Steady state oscillation of a dual scissored-pair system

ê(x)n Direction n of frame x
g Subscript for ”gimbal”
Hn Angular momentum described by n
hn Height of body n
mn Mass of body n
ωn Angular velocity described by n

Ω
[x]
n Angular velocity of linked-pair x in direction n with respect to

the inertial frame
Pn Power described by n
φn Angle described by n
r Subscript for ”rotor”
rn Radius of small body n
Rn Radius of larger body n
ρn Density of body n
sp Subscript for ”Scissored-pair”
tn Time duration of event n
τn Torque described by n
θn Angle described by n
v Translational velocity of body n
xY/Z Variable x of frame Y with respect to frame Z

Table 1: Variable List
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Chapter 1: A Review of Active Mechanical Driving Principles of Spherical Robots

Chapter Abstract

Spherical robotics is an emerging research field due to a ball’s characteristic to be holo-

nomic, have a sealed internal environment, and rebound from collisions easily. As the

research moves forward, individual groups have begun to develop unique methods of

propulsion, each having distinctive engineering trade-offs: weight is sacrificed for power;

speed is forfeited for control accuracy, etc. Early spherical robots operated similar to a

hamster ball and had a limited torque and a high-energy loss due to internal friction.

Researchers have begun to develop various novel concepts to maneuver and control this

family of robot. This chapter is an overview of the current research directions that vari-

ous groups have taken, the nomenclature used in this subdiscipline, and the various uses

of the fundamental principles of physics for propelling a spherical robot.
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1.1 Introduction

Spherical robots are a promising area of research and have many unique features that

are of interest to study. They can be designed to be sealed off from harsh environments,

to operate holonomically (For the purpose of this paper, a holonomic system will be

referred to in the robotics sense and not in the multi-body dynamics sense. A holonomic

system in robotics is one whose orientation does not affect its desired direction of travel.

For example, an automobile must point its front end towards its intended direction of

travel. A spherical robot, if designed so, may change direction at any stage of movement

without reorientating itself), and to rebound from collisions in a quick and non-destructive

manner [1]. Spherical robots have begun to be used in underwater experiments [2, 3],

child development studies [4], and security reconnaissance [5, 6, 7]. Some researchers have

even begun to develop swarms of these of robots for task execution [8]. Due to the nature

of a ball, a robot with a spherical shell will also follow the path of least resistance. The

quintessential spherical robot would have true holonomy and hence would be able to move

in any direction without having to change its orientation. The current research direction

of spherical robots is heavily focused on the internal mechanics and the corresponding

control systems. One design has not yet emerged dominantly among the others and

diverse methodologies of internal driving mechanics have resulted in a wide range of

robotic characteristics and capabilities. Due to the fact that research efforts are sporadic

and uncoordinated, researchers have yet to create an optimized and efficient system [9].

Typically, the drive system of the spherical robot is located inside a shell. In order for

the outer shell to rotate, the drive system must be able to transfer power to the outer shell

in some manner: a fixed mechanical component such as a gear, an electromagnetic device

such as a motor, etc. For true holonomy, the research challenge becomes developing an

internal drive mechanism that can provide omnidirectional output torque to a sphere

that can arbitrarily rotate around it, regardless of the orientation of either the sphere

or the drive mechanism. In essence, the inner mechanics must be able to rotate three-
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dimensionally independently from the outer shell. Since the outer shell must be connected

to the inner mechanics in some manner, this poses a difficult design challenge. However,

there are numerous ways to solve this problem, but each method has its own set of

obstacles.

These obstacles have spawned many variations of internal propulsion devices, each one

trading torque for holonomy, control for speed, etc. Some of these systems are simple, and

some have complicated designs with even more complicated control algorithms. Teams

have even begun to research propulsion by physically transforming the outer shell, which

may lead to an entirely new family of robots. The following is a review of spherical

robot internal-drive concepts and novel variations, the first being designs based on the

concept of barycenter offset. The early and current majority of designs are based on the

principle of shifting the equilibrium of a sphere [1], the most common of which is shifting

the sphere’s center of gravity.

This research has four main objectives. The first objective is to explore the current

state of the art and develop an understanding of what the current obstacles in the field

are. The second object is to propose a new type of spherical robot drive train that may

perform better than the current state of the art. The third objective will be to develop

a set of equations that will calculate key performance characteristics of spherical robots.

This equation set will allow cross platform spherical robot designs to be compared in a

controlled environment. The fourth objective will be to perform a series of parametric

analysis using this equation set on the current state of the art designs and the design pro-

posed in objective two. This research hopes to prove that designs using control moment

gyroscopes will be more agile than designs that simply shift the center of mass.

This first chapter discusses the three major types of principles used to propel a spher-

ical robot: barycenter offset (BCO) in Section 1.2, shell transformation (ST) in Section

1.3, and conservation of angular momentum (COAM) in Section 1.4. In the discussion

of each type of principle, examples of how these types of principles are utilized will be

discussed in the respective subsections. Also, novel enhancements such as legs, sensors,
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and reconfiguration are discussed where appropriate. Finally, a table of taxonomy in Sec-

tion 1.5 will be presented showing the principles, basic utilizations, and power limitations

associated with each.

1.2 Barycenter Offset (BCO)

The term barycenter offset is used in spherical robots to describe the act of shifting a

robot’s center of mass (the barycenter) in order to produce a desired motion. Consider a

robotic sphere resting in equilibrium. As its internal mechanisms move, the mass distri-

bution of the ball will be shifted, causing the ball to roll to a new position of equilibrium.

With proper timing and control methodologies, the robot can move smoothly through its

environment. However, the main limitation of this method is that the maximum output

torque is constrained because the center of gravity cannot be shifted outside of the shell.

This can best be illustrated by picturing a pendulum inside a sphere, which is a common

and straightforward design. A simplified two-dimensional model (See Figure 1.1) illus-

trates the torque that can be generated and mechanically applied to the outer shell. A

weighted bob of a given mass swings on an armature about a support rod located through

the center axis of the robot. As the bob rotates, the center of mass rotates accordingly

and the robot rolls to equilibrium. The maximum value of the torque that can be applied

x

y

4. Weighted Bob

3. Mass Displacement 

2. Rotation Angle
   (Theta)

1. Axis of Rotation
   (z axis)

0

Figure 1.1: Cross section of a spherical robot model illustrating the pendulum drive
armature and weighted bob.
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is

τmax = mgr ∗ sin(θ) (1.1)

where τ is the output torque about the z-axis (Figure 1.1, item 1), mg is the weight of

the bob (Figure 1.1, item 4), r is the displacement of the bob’s center of mass from the

shell’s center of mass (Figure 1.1, item 3), and sin(θ) corresponds to the rotation angle

from the horizontal (Figure 1.1, item 2). What follows are variations of the barycenter

offset designs.

1.2 Implementations of Governing Principle

Hamster Ball

An early design of a barycenter offset system is what is commonly referred to as the

hamster ball design [10]. The design is nicknamed this because, simply enough, it mimics

a hamster in a toy ball. A small-wheeled robot is placed inside the ball, in most cases

a small remote control car, and the weight of the robot provides enough force to propel

the robot when it moves (Figure 1.2). The shell is navigated non-holonomically similar

to a car. The heading of the internal robot must be changed in order to change the

direction of travel. Single-wheeled or multi-wheeled vehicles can be utilized, and a four-

wheeled differential-drive vehicle will create different motion curves as opposed to a single

wheeled vehicle [10]. A four-wheel drive system can act as a differential drive, giving the

robot the ability to turn in place, which adds holonomic characteristics to the vehicle.

Furthermore, the design is relatively easy to model, fabricate, and control. As long as

the end task does not require extremely accurate tracking, control is fairly simple as well

being that it maneuvers as any type of basic remote control car would maneuver. One

of the major drawbacks is that some slipping of the internal robot or driving mechanism

usually occurs. However, a closed loop control system combined with appropriate internal

tracking sensors can calculate this slippage and may mitigate the problem [10]. Aside from

the energy loss and control complications due to friction, another pitfall of this design

is the behavior of the robot when it becomes airborne during vibration or encountering
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Figure 1.2: Prototype of a Hamster Ball design [10].

bumps. When the internal vehicle becomes airborne, traction between the shell and the

internal robot’s wheels becomes zero, and the shell will lose momentum. Furthermore,

positional tracking may be affected. Although this problem can be somewhat managed

with sensors and a proper control system, in tasks where accuracy of navigation is crucial,

this shifting issue is unacceptable.

Internal Drive Unit (IDU)

To circumvent the shifting issue associated with an internal robot, a few barycenter

offset designs have incorporated a system that forces the robot’s wheels to be in constant

contact with the outer shell, either by a spring-loaded or fixed mechanism. In a spring-

loaded design, a rod and spring are attached to the top of the internal robot and then

pressed up against the shell, forcing the wheels to be in constant contact with the shell.

Attached on the top of the spring is a 3-degree-of-freedom (DOF) ball bearing that allows

the spring to travel along the surface of the inner shell with little friction (Figure 1.3).

One of the benefits of having a constant contact between the wheelbase and shell is that

the mean speed of the ball can be easily controlled by the motor wheel speed, and at low

speeds, the directional control of the system is moderately accurate [1]. The nature of

the IDU also allows the system to have either a sealed or a honeycomb outer shell. As

long as the wheels are larger than the holes in the outer shell, the robot will continue

to operate. Furthermore, this is a simple system to design and is relatively inexpensive
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to manufacture. It is an excellent research platform that can be used in academia but

has challenges operating in real-world situations. Although this is still a commonly used

Figure 1.3: Structure of Spring-Loaded Design. 1. robot body (case), 2. controlling box,
3. driving wheel, 4. steering axis, 5. supporting axis, 6. spring, 7. balance wheel [1].

low-cost design, at high speeds an IDU-based robot’s heading is difficult to control [1].

Slipping between the wheels and the shell can occur, as well as slipping between the shell

and the medium it is traveling on. Slippage issues between the wheel and the shell can

be minimized by adjusting the tension between the spring-loaded system and the internal

robot, but a tighter fit means higher friction forces throughout the robot. Furthermore,

an IDU system cannot make use of stored momentum: if the wheels stop, the robot will

behave erratically. An IDU system traveling down a small incline must use power to

keep its wheels spinning in order to move: it cannot roll down small inclines without

assistance. On the other hand, rolling down steep inclines without controlled power from

the internal mechanisms will cause unpredictable movement. From a design perspective,

the IDU system must also be extremely well balanced. An off-axis center of mass may

cause the robot to travel in an unwanted pattern.

Universal Wheel

Another design that incorporates the principles of barycenter offset is BHQ-3 [11].

The BHQ series of robots derive their name from the fact that their dynamic model was

established from the Boltzmann-Hamel equation. This design is a combination of the

hamster wheel and the previous IDU design. It can be conceptualized as a universal
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wheel type system: the interior drive mechanism can rotate freely on the inside of the

robot due to the combination of wheels attached to it. The IDU in the BHQ-3 is designed

such that the internal mechanics will not shift when encountering bumpy terrains (Figure

1.4). Two DC drive motors control the robot: one motor controls the orientation of the

IDU, and one motor controls the speed of the drive wheel. This allows the ball to move

with a zero turning radius, creating a higher degree of holonomy than the previously

described robots. In addition to having the ability to maneuver itself by the use of

barycenter offset, the robot’s velocity is also controlled by the angular velocity of the

driving wheel. As the wheel spins faster, the translational velocity of the robot increases.

This means that the internal weight of the IDU is not the only factor controlling the

momentum of the robot. This particular robot is able to travel in water, sand, as well

as up a small slope. However, it may have high energy loss due to friction from the

sponge wheels as well as the inability to roll unpowered down a slope, depending on the

motors and control method used. The HIT Spherical Robot [12] was designed to behave

Figure 1.4: Structure of BHQ-3: 1–Motor, 2–Motor, 3–Sponge wheels [11].

in a manner where the steering and driving mechanisms are independent of one another

(Figure 1.5). In a pendulum-based designed, the steering and turning mechanisms are

dependent on each other, creating a non-holonomic robot. For a robot to be able to move

in any direction regardless of orientation (holonomy), the steering and driving mechanisms

must be mechanically independent. HIT is only controlled by two motors: a turning and

a driving motor. The turning motor (Item 1, Figure 1.4) rotates the entire inner assembly
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of the robot along a rim at the equator, and the driving motor (Item 2, Figure 1.4) shifts

the center of gravity of the robot, causing it to move.

Figure 1.5: A picture of HIT and its internal driving mechanism [12].

Pendulum Driven

A popular design used by industry and academia is a pendulum-driven design (Figure

1.6). The pendulum model consists of a fixed shaft through the center of the outer shell

of the robot, with a pendulum and bob that rotates around the shaft. Rotating the

pendulum shifts the center of mass outward from the center and the shell begins to roll.

Shifting the pendulum left or right along the equator will shift the center of mass left or

right, and the robot will begin to turn in the corresponding direction. Shown in Figure

1.6 below is a photo of a commercialized pendulum robot, Rotundus. As the weight of

Figure 1.6: A commercialized pendulum-driven robot, Rotundus [13].
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the bob increases, so does the amount of torque that can be used to drive the robot.

However, a heavier bob means a heavier robot. The most notable setback to this design

is its inability to go up a steep slope. If the bob is where the majority of the weight of

the system is located, the robot can go up a steep slope. However, in practice, a well

designed spherical robot can usually only go up about a 30◦ slope [14]. A spherical robot

that can traverse an incline greater than 30◦ may require design techniques that are not

commercially or economically practical. Even though there are some limitations to the

pendulum drive, it is a low-power easy-to-implement design that allows the shell to be

sealed. Rotundus can roll at speeds of 6mph, through snow, ice, mud, and sand, and can

float. In addition, it can carry a 1.81 kg payload [13]. One drawback to this design is that

the movement of the shell is non-holonomic: there is a turning radius associated with its

movement. Like all other barycenter offset designs, the center of mass cannot be shifted

outside of the boundaries of the shell. It is also important to consider that as the radius

of the shell becomes larger and the pendulum bob becomes more massive, the output

torque increases. However, as these items become larger, the energy required to move

them also becomes larger. There is a delicate balance of design when considering material

compositions and the physical sizes of the internal elements. Designed to be a child’s toy,

Figure 1.7: Rear view of Roball’s steering mechanism [15].

Roball [15] is a pendulum-based spherical robot with an added tilt mechanism allowing

it to turn as shown in Figure 1.7. The robot was designed to operate in unconstrained
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environments and have minimal cost and complexity. Onboard sensors allow the robot

to navigate its environment autonomously. All elements are placed on a plateau of the

robot (the equator), and steering is done using a counterweight. In this particular model,

the counterweight is a battery. In this design, the counter weight is designed to stay at

the bottom of the shell, and the shell moves around it, causing propulsion. In previous

examples, the internal masses are designed to move within the shell and the robot rolls

to equilibrium.

Double Pendulum

Another novel concept proposed in recent literature is a drive system with two pen-

dulums on the inside. B. Zhao proposes such a device with an elliptical shell. Paired

with a double pendulum, this allows the robot to turn in place [16, 17]. Parameters such

as speed and maximum incline are not optimized in this design because the research is

focused mainly on proof of concept and path planning. Springs are added to the system

to dampen impacts on the internal mechanisms when traversing rough terrain or large

bumps. The literature presents the theory, which is verified by simulation, and is then

demonstrated on a proof-of-concept physical prototype (Figure 1.8). The robot is able

Figure 1.8: Mechanical structure of dual pendulum robot designed by Zhao: (1) Motor
A; (2) Motor B; (3) Ballast B; (4) Ballast A; (5) Spring; (6) Linear Bearing; (7) Guide;

(8) Outer Shell [16, 17].

to turn in place by usage of the “Stick-Slip” principle. In the first stage (stick), each

pendulum is rotated up to a horizontal position slowly, but in opposite directions. This

will cause a shift in the equilibrium and the robot will want to turn, but because the
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pendulums are rotated up slowly, the shift in equilibrium is not large enough to over-

come the static friction force holding the robot in place. In the next stage (slip), the

pendulums are quickly forced down to their original vertical orientation. This also causes

a shift in equilibrium, but the rapid movement is enough to overcome the static friction

force causing the robot to slip and turn in place. Another type of dual pendulum design

is seen in Kisbot II. Its predecessor, Kisbot I, was based on a single pendulum design and

had adaptive legs allowing it to climb stairs (discussed below). Kisbot II overcomes the

need for utilization of the stick-slip principle by allowing the internal mechanics to rotate

about an axis perpendicular to the axis of pendulum movement [18]. The axes of rotation

of Kisbot II are pictured below. The side view of Kisbot II is shown in Figure 1.9(a),

Figure 1.9: Axes of rotation of pendulums for Kisbot II. (a) Side view (b) Front view
[18].

and the front view is shown in Figure 1.9(b). The side view illustrates the ability of the

pendulums to rotate independently of each other in either direction about the diameter

of the robot. Theoretically, the stick-slip principle described by B. Zhao could also be

used to turn the robot in place. However, by adding the extra degree of freedom shown

in Figure 1.9(b), the pendulums can rotate Kisbot II from left to right as well as from

front to back, eliminating the need for the stick-slip principle. Some teams have devised

another method altogether for barycenter offset designs. By placing the bulk of materials

in the center of robot, the energy required to spin the sphere is reduced. Shafts connect

the center mass to the outer shell and weights are designed to traverse these shafts as

shown in Figure 1.10. By moving the weights up and down the shaft, the center of mass
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Figure 1.10: Picture of Spherobot and its system of shifting masses [19].

is changed and the ball begins to roll [19]. A few main differences separate this shifting

mass design from the pendulum design. First, this design is holonomic. Regardless of its

orientation, it can move in any direction. However, the controls are more complicated

because the main processor must keep real time orientation data as well as distance data

of all masses. Another downside to this design is that the internal weights traverse their

respective shafts slowly, resulting in a slow moving robot. It also may have a hard time

rolling downhill freely depending on state of the masses.

Notable Enhancements

Novel add-ons to spherical robots are as diverse as the methods used to drive them.

Designs incorporate sensors, telescopic cameras, reconfigurable legs, and even jumping

mechanisms. Some designs even have the ability to transform completely. N. Chadill

presents a reconfigurable robot that can transform from a sphere into a dual hemisphere

platform with three legs and omnidirentional wheels [20] (Figure 1.11). The ideology

behind the vehicle is that it can compact itself into a sphere for transportation and

deployment but will function as a leg-wheeled robot after reconfiguration. The once

spherical robot can then navigate pathways autonomously as any other wheeled vehicle

can. Currently, the design does not actively roll when in its spherical configuration,

but this idea can be applied to current spherical robot designs. Another reconfigurable
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Figure 1.11: Image of spherical robot after reconfiguration [21].

spherical robot with deployable legs is Kisbot I, the predecessor to Kisbot II, which is

mentioned in Section 2.2.5. Kisbot I has two types of drive modes: a pendulum-driven

mode and wheel-driven mode [22]. While the legs are retracted to the interior of the

robot, the robot can maneuver as a pendulum model. In its wheeled mode, the legs

extend, stabilizing the robot, and it can be driven like a wheeled vehicle. The legs can

also be deployed for stopping and climbing, seen in Figure 1.12. Each leg resides in an

independent hemisphere that can rotate independently of the other semi-sphere. Because

the hemispheres are independent, the legs may not necessarily need to be deployed on

the same Cartesian plane. This allows for the possibility of the robot to stabilize itself in

unusual terrains. Another way to allow a spherical robot to climb large obstacles would

be to give it the ability to jump. In a paper presented by L. Bing, a spherical robot

driven by dual pendulums is retrofitted with a mechanism that gives it the ability to

jump [23]. The jumping mechanism on the robot allows it to jump at a desired angle

and direction once it has reconfigured itself to do so as shown in Figure 1.13. This is an

extremely useful characteristic for robots of this nature because of their inability to climb

steep slopes. In order to jump, the robot stores energy in a spring by extending it with a

large mass attached to it. When the spring is released, the mass is accelerated upwards

and collides with the top of the robot. Due to the laws of conservation of momentum,
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Figure 1.12: Movement types of Kisbot I [22].

the entire robot continues upwards with the mass.

Figure 1.13: Image of hopping robot and its jumping mechanism [23].

1.3 Shell Transformation

Although not as common as barycenter offset designs, shell transformation is also

a novel method of propelling a spherical robot. This idea is fairly new and has some

interesting concepts associated with it. Instead of a complicated internal mechatronics

system to propel the sphere, the robot relies on transformation of its outer body. This can

be achieved by deformation of the encompassing shell, or having environmental elements,
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such as wind or water, act on the body itself. Depending on the design, this family of

robots may prove to be more versatile than a barycenter offset type of system. However,

this concept is still in its infancy compared with the designs discussed above and it has

potential for future research. Hence, the ideas are novel and deserve further investigations.

1.3 Implementations of Governing Principle

Pressurized Air Bladders

A basic deformable spherical rover is proposed by M. Artusi [24]. The outer shell

consists of four dielectric elastomer actuators sections, which can be transformed by

applying an electric field. Transformation of the sections in sequence will cause the robot

to roll. K. Wait proposes a similar, yet more advanced idea that utilizes pressurized air

bladders. The robot is extremely similar to a soccer ball where each pentagonal section of

the outer sphere can inflate and deflate [25]. Each section of the outer sphere is actually

an elastomer bladder that can be filled with air. Depending on which sections are filled

with air, the sphere can be pushed along a path as shown in Figure 1.14. Ingeniously,

this type of system can provide holonomic movements. Multiple bladders can be inflated

allowing for a various directions of travel. A notable outcome resulting from this research

Figure 1.14: Soccer ball type robot movement [25].

is the design of the control method, which is for the most part non-computational when
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Figure 1.15: Breakaway view of the soccer ball robot [25].

compared with the previously discussed designs. Inside of the soccer ball shell there is

another spherical robot altogether, designed extremely similar to the hamster ball and

IDU design discussed in Section 2. On the rear of the control disc, which is inside the

inner shell (shown in Figure 1.15, there is a high power LED. Each of the pentagonal

bladders is equipped with a photo diode. As the control disc moves via radio control, the

LED shines on the photo diodes of the bladders, inflating the proper bladders and thus

moving the robot.

Shape Memory Alloys

Others have even proposed deforming the outer shell in such a way that will allow

the robot to jump. T. Yamanaka proposes such a robot with “Super-ball-like” properties

[26]. Superballs have a unique way of bouncing due to their spin and elastic properties.

By manipulating the outer shell and placing a rotor in the internal structure, the robot

should be able to have controlled hops. Sugiyama proposes and demonstrates locomotion

entirely by manipulation of the outer shell [27]. The robot is comprised of shape memory

alloy (SMA) coils that can be extended/retracted when voltage is applied to them. This

allows the robot to flatten like a pancake and spring back to its original form in an instant,

causing it to jump. When controlled properly, it can also be used for smooth locomotion
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as shown in Figure 1.16.

Figure 1.16: Locomotion by deformation of SMA coils [27].

1.4 Conservation of Angular Momentum

Barycenter offset designs are by far the most widely used design due to their lack of

complication and ease of control, with shell transformation the next most frequent design.

Although barycenter offset designs are commonly implemented, a major limitation is that

because the center of mass can never go outside of the sphere, it becomes a torque-limited

system. In the last 20 years, the concept of adding control moment gyroscopes (CMGs) to

a spherical robot has started to be investigated by various research groups. By spinning

a large flywheel rapidly and rotating it about an axis, the laws of conservation of angular

momentum can be used to control the movement of the sphere. Using this method relates

the output torque of the internal mechanism to the angular velocity of the CMGs. As

the angular velocity of the CMGs increase, so does the output torque. This is the most

recent method in obtaining an output torque greater than that can be produced by a

barycenter offset type system. To date, there have been multiple designs incorporating

flywheels, each with varying successes and failures. A unique feature of using a CMG

is that these systems have reaction forces in all three spatial dimensions. If a CMG is
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spinning about the X-axis, and is rotated about the Y-axis, then there will be a torque

about the Z-axis (precession). This feature has an obvious useful potential (generating a

torque in the intended direction) but also causes control issues. Depending on the design

of the robot, the precession torque can be utilized to control or augment the robot’s

angular momentum. However, if the design does not take this extra dimension of torque

into account, it may steer the robot in an unwanted direction. Therefore, although a

gyro-based or gyro-augmented spherical robot may be able to outpower—in terms of

torque—a barycenter offset robot, there are other design challenges that must be faced

before that can occur.

1.4 Implementations

Balancing

An early approach was Gyrover, a disc-like object that balanced on its edge [28, 29].

An internal gyroscope was used to balance the robot, and the effects from the precession

torque were used to steer it. Although novel in its design, it may be impractical for

commercial usage. The literature states that it can be used at high speeds and on rough

terrain. It can also turn in place, which can provide some degrees of holonomy. On the

other hand, the robot may have difficulty correcting its orientation if it were to fall on its

side. Furthermore, it may be difficult to make precision movements of the robot unless

the embedded electronics and mechanics are extremely well designed.
Uni-Dimensional COAM

A UNI-Dimensional COAM design of this type is presented by Shu [30]. In this

design, a variable speed rotor is used for a bob. However, this particular design utilizes

the CMG bob in a different manner than a standard pendulum-type drive system does.

The acceleration from spinning the CMG faster or slower will cause the shell to turn.

Furthermore, if the CMG is already spinning at a high rate, maneuvering it up and down

as if it were a bob will cause a precession torque that may achieve higher torques than

a normal pendulum-based design (see Figure 1.18). This robot utilizes COAM in a one-

dimensional manner, but has the ability to reorientate that dimension in order to control



20

Figure 1.17: Mechanical breakdown of Gyrover [28, 29].

its movement. V. Joshi presents a robot that is controlled by two pairs of diametrically

Figure 1.18: Schematic of rotor-based bob presented by S. Guanghui [30].

opposed CMGs as shown in Figure 1.19 [31, 32]. A single motor controller controls each

CMG pair. As a pair’s angular velocity increases, the shell will rotate in the opposite

direction in order to maintain the system’s total angular momentum. Having a second

pair inside the ball means the ball’s movement has a second degree of freedom and can

move in a true holonomic manner. The state space calculations for this type of robot are

much more complicated than a simple barycenter offset design, but true holonomy can

be achieved. This is categorized as a Uni-Directional COAM robot because it has two

systems that utilize the laws of COAM, but each system only involves one spatial plane

in its COAM dynamics.
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Figure 1.19: V. Joshi’s diametrically opposed rotor pair design [31, 32].

Tri-Dimensional COAM

The fifth robot in the BHQ series, BHQ-5, uses a pendulum type of drive system with

a control moment gyroscope to augment the stability of the robot as shown in Figure

1.20 [33]. With the CMG placed where the bob of the normal pendulum system would

be, the robot is able to rotate itself depending on how the CMG rotates. Furthermore,

depending on the orientation of the CMG and how it is moved, it can also increase

the angular momentum of the robot as well, providing more torque than just a normal

pendulum and bob would. Simplifying the idea for explanatory purposes, this can be

thought of as a pendulum-type robot with a bob of variable mass. As with a pendulum

type robot, the bob on this particular design can either steer or propel the robot, but in

this case with varying levels of power. The BHQ-5 utilizes precession torque of a CMG,

and it therefore incorporates all three spatial dimensions into its COAM dynamics.
Scissored-Pairs

The idea of using gyroscopes for conservation of angular momentum based spatial

control has been utilized to control large space structures such as the International Space

Station and to stabilize large telescopes [34]. More complex designs can even be used

as inertial dampers in space. Based on the mission, four to six variable-speed control

moment gyroscopes can be configured in such a system [35]. As mentioned before, use

of control moment gyroscopes has an advantage and a disadvantage: an action on the

gyroscope causes a reaction in two orthogonal planes of space. This means that unless
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Figure 1.20: BHQ-5, a pendulum type robot with a CMG in place of a bob [33].

this is accounted for in the design, it can cause unwanted problems. One novel way to

circumvent this issue is the use of a scissored-pair (Figure 1.21). By pairing each control

moment gyroscope with another that is spinning in the opposite direction at the same

magnitude (h1 and h2), the reaction from the changing spin of the gyroscopes cancel each

other out and now an action on gyroscope pair (τ1 and τ2), causes a reaction in only

one direction (hnet). However, one downside of this configuration is that hnet switches

direction after θ becomes 180◦ or more. After that, the direction of hnet is pointed in

the opposite direction, and goes back to the original direction when θ becomes zero.

Spinning the CMGs down to zero angular velocity or spinning the CMGs in the opposite

direction can neutralize this phenomenon. This configuration has recently been used in

space robotics applications for low power actuators [36], and even more recently been

used in augmenting spherical robot control. Usage of such a device is exhibited in G.

Schroll’s Master’s thesis as well as patent [14, 37]. The robot can be thought of as an

enhanced pendulum-type design. It incorporates a variable-speed scissored pair into its

bob, allowing it to have a torque greater than mgr ∗ sin(θ) (shown in Figure 1.1). The

output torque can be thought of as

τmax = mgr ∗ sin(θ) + hnet (1.2)
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where hnetis the torque from the scissored pair, m is the mass of the bob, and r is the

radius of the bob from the center of the robot. Since hnet is a function of the angular

velocity of the CMG pair, the output torque is no longer dependent on the weight of the

bob, proverbially allowing the center of mass to be shifted outside of the shell. Videos

show the robot climbing out of steep holes and making sharp turns. Although the control

system is still being researched, this is a viable solution to the torque limit analogous

with pendulum-based designs. Although this is an innovative approach, it is only a

Figure 1.21: Picture of a Scissored-Pair configuration [38].

Figure 1.22: G. Schroll’s spherical mobile robot internal assembly and prototype
[14, 37].

momentary boost of torque and does not provide a continuous driving force. As mentioned
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above, the torque boost only lasts for a rotation of 180◦. After that boost, the CMGs

must be reconfigured either through mechanical or control methods in order to prevent

an unwanted secondary boost in the opposite direction. This presents a whole new area

of research for spherical robots, as there are many possibly ways to achieve such an

effect: gearing, controlling spin of the gyroscope speed, etc. A proper control method

or mechanical design to change the output torque direction of a scissored pair from an

oscillating to a uni-directional state may lead to a highly advanced spherical robot design.

1.5 Summary and Conclusions

Spherical robots have an abundant number of usages with an equal number of meth-

ods to control them. A brief table of taxonomy is shown in Table 1.1. Most of the

types of active drive designs are based on three main principles: offset of center of grav-

ity (barycenter offset), outer-shell deformation, or conservation of angular momentum.

Compared with the other methods, the designs based on barycenter offset tend to be

the least complex and can be controlled relatively easily. Generally speaking, barycenter

offset designs can be analyzed with a single model (Figure 1.3). However, the power

in these robots is limited because the center of gravity cannot be moved outside of the

shell. Common types of barycenter offset designs include a single wheel model, car model,

universal wheel model, and a pendulum model. These are the most commonplace of the

designs with a large amount of research data available on them. Designs utilizing methods

of conservation of angular momentum typically involve creating torque by manipulating

a single axis or three axes of a CMG. Designs can either utilize the counter rotational

force generated when spinning a CMG faster or slower (single-axis), or the precession

torque created when rotating an already spinning CMG orthogonal to its axis of spin

(triple-axis). The magnitude of torque generated in single axis designs is controlled by

the amount of acceleration of the spinning CMG, whereas in triple axis designs, the

precession torque is controlled by the angular velocity times the rotational acceleration.

CMGs integrated into a spherical robot offer a way to solve the power constraints placed
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on spherical robots by barycenter-offset designs, but this method has its own unique

set of hurdles to overcome. Shell transformation designs are a rather new concept and

may be more difficult to design but can be maneuvered with an almost calculation-less

control method. Groups have begun merging these three concepts together producing

robots that have advantages over designs based on a single concept. Marriages of multi-

ple principles, such as a pendulum type with a CMG bob, have proved to be noteworthy

concepts. Future research on gyroscope-augmented designs may lead to technology that

can be integrated into a fast, agile, holonomic spherical robot.

Table 1.1: Table of Taxonomy: Type Number, Governing Principle, Source of Movement, and
Dominant Power Factor.

Principle Method Source of Movement Power Factor Example
BCO Shifting COG COG Shift mdrive/mshell R. Mukherjee et al.

[19]
BCO Single Wheel Equilibrium Change mdrive/mshell Halme et al. [1]
BCO Universal

Wheel
Downward Force on Shell mdrive/mshell Zhan et al. [11]

BCO Pendulum Torque about Diameter mbob/mshell Michaud et al. [15]
COAM Single-Axis Reaction force from spin τx Guanghui et al. [30]
COAM Triple-Axis Precession Torque τx × τy Schroll et al. [14, 37]
OST Shell Transfor-

mation
Various Various Artusi, Wait, Ya-

manaka, Sugiyama et
al. [24, 27, 25, 26]
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Chapter 2: An Analytical Approach to the Development of a Spherical Robot

Drive Train Based on Scissored-Pair Control Moment Gyroscopes

Chapter Abstract

The current methodology of maneuvering a spherical robot is to shift the center of mass

to a set of coordinates confined by the external shell. Varying techniques of shifting the

center of mass offer different characteristics of output torque. This methodology has a

constraint on the location of the center of mass: it must be internal to the robot. This

constraint limits the maximum amount of torque that can be designed into the system.

Scissored-pair control moment gyroscopes (SP-CMGs) have recently been implemented

alongside conventional drive methodologies in order to provide a momentary boost of

torque to the robot. The work described herein is an investigation of the use of SP-CMGs

as a sole means of propulsion for a spherical robot. By utilizing variable speed control

moment gyroscopes (VSCMGs) in a SP-CMG system (SP-VSCMG), singularities that

restrict other SP-CMG drive systems to momentary bursts can be mitigated, allowing

for a continuous, controllable high torque output in a single direction. Furthermore,

the addition of a second SP-CMG system will eliminate zero-points in the net torque

equation. Analysis of the fundamental output torque equations are provided as well as

theoretical and practical control theory that create a steady output torque.
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2.1 Introduction

In this chapter, the design theory behind developing a SP-VSCMG system will be

investigated. The fundamental limitations of creating a high torque drive train for a

spherical robot will be examined, and the basic physics of CMG will be explained. The

variations of how a SP-VSCMG system functions compared to a barycenter offset system

will also be discussed. Furthermore, the principle equations defining the system limita-

tions and the base for its control theory will be derived. The behavior of the output

equation will be investigated by means of mathematical proofs and simulations. A series

of metrics will also be developed in order to evaluate the system against other non CMG

based systems. Finally, the behavior of dual SP-VSCMG system will be analyzed and a

control theory will be developed.

2.2 Fundamental Problem

Developing a drivetrain for a spherical robot has many different methods of approach.

The most common methods utilize the concepts of barycenter offset, outer shell trans-

formation, or conservation of angular momentum. The dominant challenge in designing

such a robot is the task of incorporating a high torque drive train into a small shell that

rotates around it. Most of the technology is based off of shifting the center of gravity

(barycenter offset), and since the center of gravity can never be shifted outside of the

shell, the output torque is limited. Because of the limitation on output torque, the ball

can passively roll to a new equilibrium. This means that there is not a motor actively

driving the outer shell, and the shell spins along an axle through the center of the robot.

If by some means the center of gravity could be shifted outside of the shell, the robot

could be actively driven, meaning that a motor would drive the outer shell. The problem

is best conceptualized by analyzing a simple conservation of angular momentum problem.

Figure 2.1 shows a system of two conical tubes, the inner solid, and the outer a simple

shell. These two tubes are related in that their total angular momentum must always

stay the same, and no outside forces act on the system. The engineering goal would be to
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Figure 2.1: Image of closed system of two concentric tubes that must obey the laws of
conservation of angular momentum in 2d (a) and 3d (b)

spin the outer shell as fast as possible, with as much power as possible. This is essentially

the concept of a spherical robot. In this particular example, the model is shown as a

tube for clarity, but the concept can be applied to two conical spheres of similar nature.

In this case, we can say that the inner tube is a motor controlled by a set of electronics

and a battery, and is physically connected in some manner to the outer shell to satisfy

the constraints stated above. As the inner tube spins about the z-axis, there would be a

reaction spin from the outer shell in the opposite direction in order to keep the system

at equilibrium. If the tube were placed in a system with no gravity or friction, floating

in outer space, starts from rest, and has no outside forces acting on it, we know from the

laws of conservation of angular momentum that

IIωI + IOωO = 0 (2.1)

where II and IO refer to the inner and outer inertias of the tubes, and ωI and ωO refer

to the angular velocities of the tubes. Solving for ωO, we get

ωO = −ωI
II
IO

(2.2)

In order to maximize ωO, II must be much greater than IO.
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This raises the question of why not just design the inner tube with as much inertia as

possible and the outer tube with as little as possible? Regardless of how much inertia the

inner tube has, the inner tube will have to rotate in order for the outer shell to rotate,

which is shown in the equation above. This means that there will be some power loss

associated with the rotation of the inner tube, and also the system will be extremely

heavy. The theoretical system would work, but the design constraints include mass of

the system and power requirements.

From general physics, we know that torque, τ = Iα, where α refers to angular ac-

celeration, and therefore τ/α = I. So, if τ can be maximized and α minimized, we can

therefore maximize the inertia of the system without increasing the mass to an unreason-

able amount. For the case of a robot, the ideal situation would be for the internal tube

to transfer all of its power to the outer shell. In order for this to happen, the inner tube

must not rotate, since this will use up power to transfer to the outer shell. This can be

made possible by predicting the output torque of the inner tube and applying an opposing

torque from a motor that is attached to the inner tube on one side and the outer shell on

the other. This will keep the total angular momentum of the system at zero, while the

majority of the power is transferred to the outer shell. This is easily accomplished with

a motor.

Figure 2.2 illustrates the inner tube, attached to one side of a motor and the outer

shell attached to the other. The inner tube could be any type of system used to propel a

spherical robot: a pendulum and bob, car, universal wheel, etc. Regardless of the system,

the model shown below used to solve the problem is the same. The more inertia the inner

tube has, the faster the outer shell will spin. The pendulum and bob, car, universal wheel

and other systems based of barycenter offset have one thing in common: the amount of

torque output from the inner tube depends on the mass of the tube. If the mass goes up,

so does the torque. Unless a different type of system is developed, a high torque inner

tube will result in an extremely heavy robot.

Robots utilizing the technique of conservation of angular momentum do not have this
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Figure 2.2: Mechanical cross section of a hypothetical tubular system showing the outer
shell with low inertia (a), motor and its mechanical linkages (b), and inner tube with

large inertia (c)

constraint. They are constrained by how fast the CMG is spinning. Although mass is

a factor in the output torque, the magnitude can be increased by spinning the CMG

faster, not just making it more massive. For this reason, gyroscopic forces are a novel

consideration when developing spherical robot mechanics. However, they have their own

set of trade-offs and limitations just as barycenter offset systems do.

2.3 Physics of a Control Moment Gyroscope

Depicted in figure 2.3, a control moment gyroscope (CMG) consists of a mass with

inertia I = Ix + Iy + Iz rotating at an angular velocity ωx about the x-axis. While the

CMG remains spinning about the x-axis, if an intermediate rotation is applied about its

y-axis, it will generate a torque, τ along the z-axis due to the laws of conservation of

angular momentum. Constraining the intermediate rotation to the y-axis, this can be

viewed mathematically as

τz = θ̇y × (I · ωx) (2.3)

This phenomenon can be used to create large amounts of torque in a small package due

to the fact that τz is a factor of ωx, the angular velocity as shown in figure 2.3. If a
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Figure 2.3: A control moment gyroscope showing its angular velocity, ωx1 , the change of
angular velocity as the CMG rotates about the y-axis, ωx2 , and the angle the between

the two velocity vectors, θy

system of such a nature was on a fixed position and orientation and attached to the crust

of the earth, τz could simply be controlled by a motor, and there would be no consequent

reaction forces. However, when integrated into an internal shell of spherical robot, this

is not the case. If, for example, a torque in the τy direction was used to propel such a

robot, a torque from the τz direction must be applied. The reaction torque associated

with τz would spin the robot as well as the torque from τy causing an overly complicated

control system and, more importantly, an unwanted force vector on the system.

To negate this phenomena, a scissored pair system can be utilized. The usage of

scissored-pair CMGs was conceived more than a century ago and was originally thought

of as a method to stabilize large vehicles [10]. Over the century, this technology has

been transitioned to be used in a multitude of devices such as large structures in space

[35], robotic stabilization platforms, and most recently, as an alternative to controlling

robot end effectors from traditional methods such as actuators and motors [39, 40] . The

mechanism consists of two CMGs of equal magnitude and opposite sign gimbal angles,

each on a parallel gimbal axis [41]. As mentioned above, a single CMG produces unwanted

singularities in the output torque, thereby complicating the control system, or completely

nullifying the feasibility of the drive system all together. By creating a scissored-pair of
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CMGs, these singularities cancel each other out, creating an output torque in a single

direction. The variable direction of output torque is one of the most difficult principles

to overcome in CMG array design, and a scissored-pair allows for unidirectional output

torque [41].

2.4 Derivation of Key Equations

net
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Figure 2.4: View of a scissored-pair CMG configuration showing the angular
momentums (hn) acting on closed system. Note that the projection of hr1 and hr2 will

cancel with each other, and that hg1 and hg2 are equal and opposite.

Figure 2.4 depicts a scissored pair configuration of CMGs. Each CMG has its own

spin momentum, hr, its own input momentum, hg, and each are generating a precession

momentum, hp. From rigid body dynamics [42], we know that precession torque is equal

to

~τp = θ̇g × hr (2.4)

The magnitude of which is

|~τp| = | ~hr||θ̇g|sin(θg) (2.5)

where θg is the angle between ~hr and the z-axis. The torque output of the scissored pair

, τsp, has been derived in previous works ([37],[14],[43],[39],[34],[44]), and its general form
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is

τsp = −2θ̇gIrωr cos θg (2.6)

where ωr is the magnitude of angular velocity of the spin momentum of the CMG, Using

electronics, we can control the gimbal rotation position and rotor spin of each CMG, θg

and θr, respectively. Although τsp is derived from first principles in [39],[34], and[44], the

system used in this work is based on the system designed in [37],[14], and [43]. For clarity,

the scissored pair system used in this body of work will be described from first principles.

Figure 2.5 shows a scissored-pair system composed of two rotors (3A and 3B) attached to

two gimbals (2A and 2B) which are attached to a rod (1). In the final application, the rod

will be attached to two diametrically opposed points inside of a spherical shell. Figure

Figure 2.5: Scissored pair system showing rotors, gimbals, rod (frame 1). The
coordinate systems for all bodies are shown and all ê2 axis are collinear

2.6 depicts the direction of the angular momentums of the scissored-pair system from an

initial starting position. The angular velocities of the gimbals with respect to frame one
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are equal and opposite. With respect to frame one, the angular velocities of the rotors

are also equal and opposite. However, the inital starting position of rotor/gimbal 3A/2A

is rotated 180 degrees about the êg axis, meaning that although the angular velocities

are opposite with respect to frame 1 at the starting position, they are equal with respect

to their respective rotor frame.

Figure 2.6: Scissored pair system shown at time zero. The direction of the angular
momentums of each body are also depicted.

Figure 2.7 depicts the scissored pair system after a period of time when the gimbal

rotation has had an effect. The angle between frames 2A and 1 is shown as θg. This is

also the angle between frames 3A and 1 due to the fact that 2A and 3A rotate together

about the ê2 axis, although the angle from nA and nB frames are equal and opposite

due to the equal and opposite rotation of the gimbals.
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Figure 2.7: Scissored pair system shown at time 1. The direction of the angular
momentums of each body are also depicted, as well as the change of the angular

momentums from time 0.

In order to solve for the angular momentum on body 1, H1, we will start by using

conservation of angular momentum on the system. The inertial frame is at the center of

of mass of body 1. This yields the equation

0 = H0 +H1 +H2A +H3A +H2B +H3B (2.7)

The angular momentum of the inertial frame, H0, is zero, so we will solve for H1 and

expand individual terms.

−H1 = I2A/0ω2A/0 + I3A/0ω3A/0 + I2B/0ω2B/0 + I3B/0ω3B/0 (2.8)

where notation xY/Z is read as variable x of frame Y with respect to frame Z. The next
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step is to expand the angular velocities to the sum of the individual frames.

−I1/0ω1/0 =I2A/0(ω2A/1 + ω1/0) + I3A/0(ω3A/2A + ω2A/1 + ω1/0)

+I2B/0(ω2B/1 + ω1/0) + I3B/0(ω3B/2B + ω2B/1 + ω1/0)

(2.9)

Rearranging the ω1/0 terms yields

−(I1/0 + I2A/0 + I3A/0+I2B/0 + I3B/0)ω1/0 =

I2A/0(ω2A/1) + I3A/0(ω3A/2A + ω2A/1)

+I2B/0(ω2B/1) + I3B/0(ω3B/2B + ω2B/1)

(2.10)

For notation purposes, I1/0 + I2A/0 + I3A/0 + I2B/0 + I3B/0 = IT . Substituting yields

−ITω1/0 =I2A/0(ω2A/1) + I3A/0(ω3A/2A + ω2A/1)

+I2B/0(ω2B/1) + I3B/0(ω3B/2B + ω2B/1)

(2.11)

As described before, a scissored-pair undergoes a sequenced of body fixed rotations. This

is shown in figure 2.8. The configuration of the coordinate systems is shown before any

rotations occur.
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Figure 2.8: Initial configuration of coordinate system. A sequence of body-fixed
rotations occurs between individual coordinate systems where body 1 refers to the rod,

bodies 2A and 2B refer to the gimbals, and bodies 3A and 3B refer to the rotors.

The rotation between the frame 1 and 2A can be described as
ê
(2A)
1

ê
(2A)
2

ê
(2A)
3

 =


cos θg 0 − sin θg

0 1 0

sin θg 0 cos θg




ê
(1)
1

ê
(1)
2

ê
(1)
3

 (2.12)

where θg is the gimbal angle of rotation, which is the same magnitude for both gimbal 2A

and 2B. Graphically, this is shown in figure 2.9. Similarly, the rotation between frame 1

Figure 2.9: Rotation between frame 1 and frame 2B, where θg equals the gimbal angle
of rotation, which is the same magnitude for 2A and 2B, but opposite direction
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to 2B can be described as
ê
(2B)
1

ê
(2B)
2

ê
(2B)
3

 =


cos θg 0 sin θg

0 1 0

− sin θg 0 cos θg




ê
(1)
1

ê
(1)
2

ê
(1)
3

 (2.13)

and graphically represented in figure 2.4.

Figure 2.10: Where θg equals the gimbal angle of rotation, which is the same magnitude
for 2A and 2B

From equations 2.12 and 2.13 it is important to note that

ê
(2A)
2 = ê

(1)
2 (2.14a)

ê
(2B)
2 = ê

(1)
2 (2.14b)

Therefore

ê
(2A)
2 = ê

(2B)
2 (2.15)

The angular velocity of the gimbal rotation, ωg, is equal magnitude and opposite direction
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for each gimbal. This can be described as

ω2A/1 = Θ̇gê
(1)
2 = ωgê

(1)
2 (2.16a)

ω2B/1 = −Θ̇g(−ê(1)2 ) = −Θ̇gê
(1)
2 = −ωgê(1)2 (2.16b)

thus

ω2A/1 = −ω2B/1 (2.17)

Substituting equation 2.17 into equation 2.11 yields

−ITω1/0 =���
��

��:0
I2A/0(ω2A/1) + I3A/0(ω3A/2A +��

��:0
ω2A/1)

+���
��

���:0
I2B/0(ω2B/1) + I3B/0(ω3B/2B +��

��:0
ω2B/1)

(2.11)

Therefore

−ITω1/0 = I3A/0(ω3A/2A + ω3B/2B) (2.18)

where ω3A/2A and ω3B/2B are the rotor spins with respect to their respective gimbals. In

other words

ω3A/2A = ωrê
(3A)
1 = ωrê

(2A)
1 (2.19a)

ω3B/2B = −ωrê(3B)
1 = −ωrê(2B)

1 (2.19b)

Where ωr is the magnitude of rotor spin angular velocity. Imposing the transformations

described in equations 2.12 and 2.13 yields

ω3A/2A + ω3B/2B =ωrê
(2A)
1 − ωrê(2B)

1 (2.20a)

=ωr(cos θgê
(1)
1 − sin θgê

(1)
3 )

−ωr(cos θgê
(1)
1 + sin θgê

(1)
3 )

(2.20b)
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Therefore

ω3A/2A + ω3B/2B = −2ωrsin θgê
(1)
3 (2.21)

Substituting in equation 2.21 into equation 2.18

−ITω1/0 = I3A/0(−2ωrsin θgê
(1)
3 ) (2.22)

or

ITω
1/0 = 2I3A/0ωrsin θgê

(1)
3 (2.23)

To evaluate
d

dt

(
ITω

1/0
)

we will take the time derivative of 2.23

d

dt

(
ITω

1/0

)∣∣∣∣∣
0

=
d

dt

(
2I3A/0ωr sin θgê

(1)
3

)∣∣∣∣∣
0

(2.24)

which yields

ITα
1/0 =2I3A/0αr sin θgê

(1)
3 + 2I3A/0ωrωg cos θgê

(1)
3

+2I3A/0ωr sin θgω
1/0 × ê

(1)
3

(2.25)

In matrix form, this yields

ITα
1/0 =


2I3A/0ωrΩ2 sin θg

−2I3A/0ωrΩ1 sin θg

2I3A/0αr sin θg + 2I3A/0ωrωg cos θg

 (2.26)

where

ω1/0 = Ω1ê
(1)
1 + Ω2ê

(1)
2 + Ω3ê

(1)
3 (2.27)

is the angular velocity of the rod with respect to the inertial frame. Ωn is the magnitude

of the velocity in the n direction. Next, we will look at two special cases of equation 2.26.

The first special case is when Ω1 and Ω2 are equal to zero, which means that body 1 is
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only rotating about the ê
(1)
3 axis. This will yield

ITα
1/0 =


0

0

2I3A/0αr sin θg + 2I3A/0ωrωg cos θg

 (2.28)

By examination of the equation 2.28 we can see that the only output torque of the system

will be along the ê
(1)
3 axis. The second special case we will examine will be when the

acceleration of the rotor is zero. This will yield

ITα
1/0 =


0

0

2I3A/0ωrωg cos θg

 (2.29)

In a realistic environment, a scissored-pair’s torque can be described as shown in equation

2.26, which will be difficult to control when combined with a control system. However,

it will be helpful to understand the scissored-pair in an ideal state, when rotor speed is

constant and Ω1 and Ω2 are equal to zero. Furthermore, equation 2.29 is the same as

equation 2.6, the torque equation cited in the other publications, thus further solidifying

the equation set presented in this section is correct.

2.5 Torque in Ideal Conditions

The scissored pair system shown in figure 2.4 shows the angular momentums acting

on the system. hr is the angular momentum associated with the spin of the CMG, hg is

the angular momentum of the gimbal CMG which is controlled by the user, and hp is the

generated angular momentum due to precession. We can assume that hg is controlled

by a single or set of motors and is ideal. In a scissored pair configuration, the angular

momentum vectors of hg are equal and opposite, and therefore cancel each other out.

In this instance hg1 is directed out of the paper, and hg2 is directed into the paper.

Furthermore, because each CMG is mirrored about the z axis, the projection of each hrn
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angular momentum along the x axis cancels with its mirrored counterpart as long as they

are of equal magnitude. Further assuming that the rotors maintain constant speeds, and

that there are no torques in the ê
(1)
2 and ê

(1)
3 , the resultant output torque of the system

can be described as

τsp = 2IRωgωrcosθg (2.30)

where IR is the inertia dyadic of the rotor with respect to the inertial frame. In this

specific case it is I3A/0. Equation 2.30 is the same as equation 2.6, the equation derived

in previous literature, and its general form can be looked at as

τsp = A cos θg (2.31)

where A is dependent on design parameters such as inertia and maximum angular velocity

of the rotors. In terms of mathematical equations A = 2IRωgωr. The scissored-pair

introduces a constraint such that the uni-directional output torque is only advantageous

within a certain envelope of maneuver: after 180 degrees of rotation, the torque reverses

direction. If using a scissored-pair as a means to manipulate an end effector, the CMG

controlled linkage could only rotate 180 degrees before it reverses direction. The goal of

this research is to manipulate the magnitude of the gimbal and rotor torques so that the

scissored pair may provide a continuous output torque.

Equation 2.31 is sinusoidal in nature. If A was a constant value, and θg had no limit of

rotation, meaning that the scissored pair continues to spin forever and has no mechanical

stopping point where it has to be reversed, the output torque would switch between

positive and negative. A possible solution to this would be to have a geared system

that could switch mechanical connections when one needs to produce an all positive (or

negative) output. Another solution would be to attempt to manipulate parameters in A

through design and control methods.

Figure 2.11 is a normalized graphical representation of the general output form of

equation 2.31, where A is equal to one. Parameter A is set to one in this example in order
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Figure 2.11: Plot showing the sinusoidal nature of the torque output of a scissored pair

to visualize the periodic nature of the function and examine its behavior. In practice,

A will be changing dependent upon the design of the control system. The x-axis ranges

from 0 to 2π, representing a full rotation of the scissored-pair system. The y-axis depicts

the output torque of the pair where accelerations and velocities are constant during the

system’s rotation. By visual inspection, there are points in which the system switches

polarity in its magnitude. In practice, the positive or negative magnitude moves the

robot forward or backward. It would be ideal for this output function to have either a

continuous positive or negative magnitude so that a robot can be rolled in one direction

continuously. For the duration of this paper, we will be addressing the issue of creating

a purely positive output.

2.6 Changing Torque in Ideal Conditions

The first important piece of information is to determine when τnet switches polarity.

From 2.31 we know that τnet will switch polarity when

θg =
π

2
,
3π

2
(2.32)

When the output torque switches polarity, a component of A must be manipulated so

that output polarity stays positive. From 2.30 we can see that the possible options are

changing ωr or ωg. Knowing this information, there are three possible ways to change

the variables in the specific output form: 1) change the magnitude of ωg or ωr to zero, 2)

change the sign of the magnitude of ωg or 3) change the sign of the magnitude of ωr.
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Figure 2.12: View of the output torque of a scissored pair when ωS is set to zero if
output torque is below zero

Option 1 involves changing either ωg or ωr to zero, and τsp is shown in figure 2.12.

Changing the gimbal angular velocity to the system, ωg, to zero would mean that the

system stops rotating, but the rotors are active and gyroscopic effects will take place if

outside forces act on the system. Changing the rotor angular velocity, ωr to zero means

that there will be no gyroscopic effect, but the CMGs will still rotate about the gimbal

axis. If there is no gyroscopic effect, then the system can be reorientated to its initial

state with minimal effect on the output torque. Once the system is reconfigured, ωr can

change to a nonzero number, recreating gyroscopic effect, and then the process repeats.

Figure 2.12 is a view of what the output torque would look like if ωr was decreased to

zero during periods when the output is in the negative.

It is important to note that the x-axis of this graph is θ, a unit of space, not time.

During the phase where the output torque is zero, the system may be reset to the next

phase quickly, resulting in a time domain graph where the peaks are much closer together.

In other words, the positive region of the graph last much longer than the zero portion.

Option 2 involves reversing the polarity of the A term by reversing the gimbal speed.

When the gimbal speed is reversed, θg also changes direction. This means that as θg

approaches π/2 from 0, if ωg changes direction, so does θg. Therefore, θg will oscillate

between 3π/2 and π/2. This means that ωr would also need to switch polarity in order

for the equation to become positive.

Option 3 would be to switch the magnitude of ωr when θg equals π/2 or 3π/2. This
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Figure 2.13: View of the output torque of a scissored pair when ωS is set to −ωS if
output torque is below zero

would result in a torque output function that is mathematically similar to

|~τsp| = abs(2Irωgωr sin θg) (2.33)

which is graphically shown in figure 2.14

The graph represents an instantaneous switch of ωrmax to −ωrmax at π/2 and 3π/2 .

In practice, an instantaneous polarity change of this type would result in high current

spikes and extreme torques that the motors may not be able to handle. In the final

design, a switch in polarity of this nature will require time for the CMG to accelerate

and decelerate.

All three options discussed are possible solutions to making an all positive output

torque. However, stopping the rotation of the CMGs and reconfiguring their position will

result in large times where τsp is zero. As mentioned previously, the goal of this research

is to create a continuous, non-zero, positive output torque. The first option will create an

all positive output, but will not be constant due to the time it would take to reconfigure

the system. The second option has the ability to be continuous, and this is what the

research will focus on. It is important to note, however, that it may not be necessary for

the scissored pair to have a constant output, such as in matters of coasting. So although

option one may not provide the most power, it still may be useful in the design.

This concept can be visualized in figures 2.14 and 2.15. The blue lines represent the
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potential output torque of the system, and the black dotted lines represent the normalized

plot of the angular velocity of the VSCMGs. Figure 2.14 depicts a control system where

the angular velocity of the VSCMG is halted while the system reorientates, and then the

VSCMG is speed up in the same direction. Figure 2.15 depicts a control system where the

angular velocity of the VSCMG is spun in the opposite direction instead of re-orientating

the system. As previously indicated, there is no down time associated with this control

system since the system does not need to reconfigure itself.

0 45 90 135 180 225 270 315 360

−1

−0.5

0

0.5

1

θg (Degrees)

N
or

m
al

iz
ed

O
u
tp

u
t

Form of A cosx

Figure 2.14: Control option 1, where the scissored-pair is reconfigured when output
torque becomes negative. The time for reconfiguring the system may be extremely

short, depending on the hardware.
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Figure 2.15: Control option 2, where the scissored-pair continues to rotate and ωr is
reversed when the output torque is below zero. Since the system does not need to be

reconfigured as in option 1, there is little to no system down time.

2.7 Controls in Ideal Conditions

To define a global, governing control equation for such a complicated system is an

overly daunting task. Below is the view of the output torque equation in terms of deriva-

tives of θg.

τsp(θg) = 2Irωrθ̇g cos θg (2.34)

The output function is dependent on θg, but also on its first derivitive, which makes

forming a general solution an overly complex problem. Therefore, the approach that will

be to examine the controls at a steady system state and then develop a control logic

based on the steady state conditions. Through inspection and simulation, two steady

states were selected, ∆ and Γ. The ∆ steady state consists of switching the magnitude

of ωr when the output torque changes from positive. The Γ steady state consists of

switching the magnitude of ωg when the output torque becomes negative. Each state has

unique properties which are discussed in the next sections. It is important to note that

the ∆ and Γ oscillations are steady state and do not involve transient start up issues. To

begin the discussion, we will look at both the ∆ and Γ steady states in ideal conditions

before examining them in non-ideal conditions.
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Figure 2.16: Control signals ωg and ωr and the corresponding output torque, τsp shown
in a spacial domain in the ∆ steady state.

The Delta (∆) state of oscillation has an output form that appears like a rectified

cosine function as shown in figure 2.16. This oscillation state is achieved by changing the

polarity of ωr when the torque becomes negative. θg oscillates from 0 to 2π, meaning

that the system can spin continuously without having to reverse direction. Furthermore,

the angular flywheel velocity, ωr switches magnitude polarity twice per period.

The Gamma (Γ) state of oscillation has an output form that resembles a rectified sine

function as shown in figure 2.17. This state is achieved by switching polarity of ωg when

the output torque becomes negative. The angular gimbal velocity, ωg, switches polarity

twice per period.
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Figure 2.17: Control signals ωg and ωr and the corresponding output torque, τsp shown
in a spacial domain in the Γ steady state.

However, the Γ oscillation state of figure 2.17 is not easily achievable in a time domain.

For example, as θg goes from 0 and reaches 180 degrees, ωg needs to change orientation

to keep the output torque positive. However, the x-axis, θg is dependent upon ωg. Thus,

if ωg becomes negative, θg will travel in the reverse direction. Unfortunately any value of

θg that is less than 180 degrees requires a positive value of ωg. In short, the system would

become stuck when θg reaches 180 degrees, and ωr would have to switched as well. Due

to the fact that Γ oscillation state requires switching of both ωr and ωg, this work will

focus on the simpler control method of the ∆ steady state which requires only switching

the polarity of ωr.

2.8 Peak Torque in Ideal Conditions

When designing such a system, it is helpful to know the possible maximum output

torque in order to have a basis to compare an individual design to. This can be done

by taking the derivative of the ideal torque function, equation 2.29, solving for zero, and



50

substituting that answer back into the original equation. Since the goal is to determine

the peak maximum of the function, the maximum value of ωr and ωg will be used. These

parameters are selected during the design phase and are characteristics of the motor

assemblies. The derivation of τsp,max is shown below.

τsp = 2Irωrωg cos θg (2.35a)

d

dθ
(τsp) =

d

dθ
(2Irωrωg cos θg) (2.35b)

0 = −2Irωrωg sin θg (2.35c)

0, π = θg (2.35d)

Substituting equation 2.35d into equation 2.29 yields

τsp,max = 2Irωrωg cos 0 (2.36a)

τsp,max = 2Irωrωg (2.36b)

When evaluating the system against itself and other designs, equation 2.36b can be used

to determine the maximum peak output possible of an ideal system.

2.9 Potential Average Torque in Ideal Conditions

Another good quantitative metric to use when designing a scissored-pair system is the

comparison of the potential average output of the system to an individual design. This

can be done using simple calculus. The average of any function can be determined by

using the formula:

τsp,avg =
1

b− a

b∫
a

f(x)d(x) (2.37)

where f(x) is the function of the output torque, and a and b are the upper and lower

limits. In this case, we will examine the output torque average in terms of 2π, or one full

rotation of θg. Substituting in equation2.29 to equation 2.37 yields
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τsp,avg =
1

b− a

b∫
a

(
2Irωrωg cos θg

)
dθI (2.38a)

τsp,avg =
2Irωrωg
b− a

b∫
a

(
cos θg

)
dθI (2.38b)

τsp,avg =
2Irωrωg
2π − 0

2π∫
0

(
cos θg

)
dθI (2.38c)

τsp,avg =
4Irωrωg
2π − 0

π∫
0

(
cos θg

)
dθI (2.38d)

τsp,avg =
4Irωrωg

π
(2.38e)

When evaluating the system against itself and other designs, equation 2.38e can be

used to determine the possible average torque output of an ideal system.

2.10 Torque in Non-Ideal Conditions

As mentioned previously, non-ideal output torque is when the speed of the rotors is

non-constant, αr 6= 0, or when body 1 is rotating in the inertial frame, meaning Ω1 6= 0

and or Ω2 6= 0 as discussed in equation 2.27. For this research, we are not concerned with

body 1 rotation in the inertial frame, so we will focus soley on the non-ideal case when

αr 6= 0 which is

{
ITα

1/0
}
ê
(1)
3 = {2Irαr sin θg + 2Irωrωg cos θg} ê(1)3 (2.28)

The introduction of the acceleration of the rotor, αr, introduces a sine term into the

equation which changes where the zero crossings of the function are. We can start to find

the zero crossing by setting 2.28 equal to zero and solving for θg. We will call this special
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value of θg, θ0. θ0 is the gimbal angle when the output torque along ê
(1)
3 is equal to zero.

0 =2Irαr sin θ0 + 2Irωrωg cos θ0 (2.39a)

−αr sin θ0 =ωrωg cos θ0 (2.39b)

tan θ0 =− ωrωg
αr

(2.39c)

Therefore

θ0 = tan−1

(
−ωrωg

αr

)
(2.40)

Unlike the zero crossing in ideal settings, the zero crossings for non-ideal settings may

change dependent on equation 2.40. In the best possible control setting for non-ideal

conditions, the gimbal rate and acceleration will be at their maximum whenever possible.

Therefore, we can look at equation 2.40 as a function of ωr and set both αr and ωg to 1.

The graph of this is shown in figure 2.18
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Figure 2.18: Control signals ωg and ωr and the corresponding output torque, τsp shown
in a spacial domain in the Γ steady state.

We can see as ωr increases or decreases in magnitude, the zero crosses are closer to

±π/2. As ωr is closer to zero, the zero crossings also come closer to zero, meaning that

the output torque has a smaller span where it is negative.

The worst case scenario for a non-ideal configuration is when the the rotors are con-
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stantly accelerating or decelerating, meaning that the sin term of equation 2.28 is always

non zero. In the worst case, the velocity will change from +ωr,max to −ωr,max over a

period of π radians. This event will take place dependent upon the gimbal rate, ωg.

Meaning that ωg has a direct correlation to the magnitude of αr through the equation

αr =
ωr,maxωg

π
(2.41)

Equation 2.41 specifies the magnitude of the acceleration, but not the direction which

in this instant is either positive of negative. The direction is based on the control al-

gorithm and varies upon the specific use case. For that reason, we will add in a step

function u(t) to the acceleration component which can be either 1 or −1 depending upon

the direction of the acceleration. Substituting this into equation 2.28 yields

{
ITα

1/0
}
ê
(1)
3 =

{
2Ir

ωr,maxωg
π

sin θgu(t) + 2Irωrωg cos θg

}
ê
(1)
3 (2.42)

Furthermore, ωr will be ωr,max/2 in a worst case scenario and substituting and sim-

plifying yields

{
ITα

1/0
}
ê
(1)
3 = 2Irωr,maxωg

{
sin θg
π

u(t) +
cosθg

2

}
ê
(1)
3 (2.43)

2.11 Controls in Non-Ideal Conditions

The control logic in non-ideal situations is similar to the ideal control logic shown in

figure 2.16 except for two differentiations. First, ωg is not at its maximum value for the

entire duration. Second, ωr does not switch instantaneously. In figure 2.19, ωr requires

a full 180 degrees to accelerate from its peak value to its peak value in the opposite

direction. However, certain designs may not require this event to take place over 180

degrees.
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Figure 2.19: Control signals, θI , and output torque showing lumps of the ∆ state. In
this state, the torque is more evenly distributed across t

Figure 2.20 depicts what the output torque might look like if the acceleration of the ro-

tor took place over a shorter period of time. The dotted lines in figure 2.20 show the dead-

band region of the output torque that is effected by the rotor acceleration/deceleration

event. Furthermore, the size of the deadband has an effect on the potential output torque

of the system. The larger the deadband, the less torque. If the deadband was zero, mean-

ing that a rotor could instantaneously switch its rotation direction, there would be no

loss in efficiency. Figure 2.21 shows the degree of the deadband vs the efficiency. Even

in worst case scenario where the rotor requires a full 180 degrees to switch is rotational

direction, the system is still around 65% efficient.
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Figure 2.20: Control signals, θI , and output torque showing peaks of the Λ state.
Torque is less evenly distributed across t, and represents a rectified sine wave.

0 20 40 60 80 100 120 140 160 180
0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Deadband (Deg)

E
ffi

ci
en

cy

Output Efficiency vs Deadband (Deg)

Figure 2.21: Control signals, θI , and output torque showing peaks of the Λ state.
Torque is less evenly distributed across t, and represents a rectified sine wave.
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Metrics calculated for ideal conditions, such as average and peak torques, are easily

calculated due to the fact that the steady-states do not vary. However, for non-ideal

conditions,ωg, ωr, and αr vary during steady state conditions, and it is therefore easier to

calculate in simulated environment as opposed to evaluation by a standardized equation

as done before.

2.12 Dual SP-VSCMG Configurations

As previously mentioned, a scissored-pair system only offers a boost of torque, whereas

a barycenter offset system can offer a constant torque. An approach to creating a constant

output torque will be to design a dual scissored pair system, whose θg angles are offset

from each other. Figure 2.22 is a visual depiction of this concept. A scissored pair system,

shown as a dark box, is rigidly connected to a second system by the rod in the center

of the system. The net torque for such a system was derived in equation 2.26. Due to

the symmetry of the design, we can say that moments created when combining two pairs

together will cancel out, and thus we can simply add the two torque matrices together.

This addition yields
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Figure 2.22: Combination of two scissored pairs with a rigid connection. Boxes indicate
linkage number of the pair.

ITα
1/0
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1/0
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2I
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r ω
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2 sin θ
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g

−2I
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r ω
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1 sin θ
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g
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r α

[1]
r sin θ

[1]
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[1]
r ω

[1]
r ω

[1]
g cos θ

[1]
g

+


2I

[2]
r ω

[2]
r Ω

[2]
2 sin θ

[2]
g

−2I
[2]
r ω

[2]
r Ω

[2]
1 sin θ

[2]
g

2I
[2]
r α

[2]
r sin θ

[2]
g + 2I

[2]
r ω

[2]
r ω

[2]
g cos θ

[2]
g


(2.44)

where the superscript [n] notes what pair in the linkage the variable is referring to. Also,

for notation, we will say that the sum of the torques of the two systems is

τdsp = ITα
1/0
1 + ITα

1/0
2 (2.45)
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Previously, we defined

ω1/0 = Ω1ê
(1)
1 + Ω2ê

(1)
2 + Ω3ê

(1)
3 (2.27)

which is the angular velocity of body 1 (the rod) with respect to the inertial frame. With

the addition of the second scissored pair system, we will use the notation

ω[n],1/0 = Ω
[n]
1 ê

(1)
1 + Ω

[n]
2 ê

(1)
2 + Ω

[n]
3 ê

(1)
3 (2.46)

where [n] is the number used to differentiate between linked scissored pairs. Since the

two pairs are rigidly connected, the reference frames to each do not change. Substituting

this into equation 2.44 yields

τdsp =


2I

[1]
r ω

[1]
r Ω

[1]
2 sin θ

[1]
g + 2I

[2]
r ω

[2]
r Ω

[2]
2 sin θ

[2]
g

−2I
[1]
r ω

[1]
r Ω

[1]
1 sin θ

[1]
g + 2I

[2]
r ω

[2]
r Ω

[2]
1 sin θ

[2]
g

2I
[1]
r α

[1]
r sin θ

[1]
g + 2I

[1]
r ω

[1]
r ω

[1]
g cos θ

[1]
g + 2I

[2]
r α

[2]
r sin θ

[2]
g + 2I

[2]
r ω

[2]
r ω

[2]
g cos θ

[2]
g


(2.47)

Furthermore, we know that I
[1]
r = I

[2]
r , and substituting this into 2.47 and combining

terms yields

τdsp =


2Ir(ω

[1]
r Ω

[1]
2 sin θ

[1]
g + ω

[2]
r Ω

[2]
2 sin θ

[2]
g )

−2Ir(ω
[1]
r Ω

[1]
1 sin θ

[1]
g + ω

[2]
r Ω

[2]
1 sin θ

[2]
g )

2Ir

(
α
[1]
r sin θ

[1]
g + ω

[1]
r ω

[1]
g cos θ

[1]
g + α

[2]
r sin θ

[2]
g + ω

[2]
r ω

[2]
g cos θ

[2]
g

)
 (2.48)

Similar to the single scissored-pair, we can look at this equation in terms of ideal and non-

ideal equations. The non-ideal situation we are interested in is when the system is not

rotating with respect to the inertial frame, but the rotors have a non-zero acceleration.
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This can be viewed as

τdsp =


0

0

2Ir

(
α
[1]
r sin θ

[1]
g + ω

[1]
r ω

[1]
g cos θ

[1]
g + α

[2]
r sin θ

[2]
g + ω

[2]
r ω

[2]
g cos θ

[2]
g

)
 (2.49)

The ideal situation is when the rotors have a zero acceleration as well, which yields

τdsp =


0

0

2Ir

(
ω
[1]
r ω

[1]
g cos θ

[1]
g + ω

[2]
r ω

[2]
g cos θ

[2]
g

)
 (2.50)

The offset between θg and θ
[2]
g determines the maximum, minimum, and average of the

output torque. Figure 2.23 shows the normalized the ideal dual, scissored-pair output

torque function, equation 2.50, plotted as a function of the difference between θg and θ
[2]
g .

The graphs were created using the ideal output torque for a dual scissored pair, as well

as the ideal control logic, ∆. Due to the fact that we now have a second scissored pair,

we will refere to the control logic as ∆2.
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Figure 2.23: Plot showing the maximum, minimum and average potential torque of a
dual scissored-pair system with respect to a varying offset
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The figure shows three important facts. The first is that the average of the function

remains the same regardless of the what the offset is. The second is that with a 0 or 180

degree offset, the output function can reach its maximum physical potential. However,

the value will also drop to zero. The behavior of the output function with a 0 degree

offset is shown in figure 2.24. The third fact is that at a 90 degree offset, the output

function has its lowest maximum and highest minimum. This means that the output

function has the smallest ripple at this point. The behavior of the output function with

a 90 degree offset is shown in figure 2.25. It is important to note that with a 90 degree

offset, the torque does not reach zero as it does in a single pair system.
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Figure 2.24: Normalized ∆2 steady state with 0 offset between pairs, τdsp,peak of 2,
τdsp,min of 0
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Figure 2.25: Normalized ∆2 steady state with π/2 offset between pairs, τdsp,peak of 1.4,
τdsp,min of 1
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2.12 Conclusion

In this section we discussed the fundamental problem of the design, and how the

center of gravity can never be shifted outside of the shell. The concept of transferring

angular momentum to the outer shell as opposed to shifting the center of gravity was

also introduced. Next, a brief review of control moment gyroscopes was given, followed

by an introduction to the properties of a scissored pair. A set of torque equations of

a scissored pair was then derived from first principles, followed by a discussion on an

ideal scissored-pair system as well as potential minimum, maximum and average output

torques. Non-ideal conditions were also discussed, as well as how these conditions effect

the control logic as well as the net torque. With a single scissored pair described, the idea

of adding a second scissored pair with a different phase than the first pair was introduced.

The addition of the second scissored-pair creates the possibility of an entirely positive,

non-zero output torque as shown by plotting the net torque with a varying phase angle.

The next section will discuss how the system will be constructed and how it will be

compared to a barycenter offset design.
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Chapter 3: Modeling Conventional and Gyroscopic Spherical Robot Designs

Chapter Abstract

One of the key elements of the this research is to determine whether a spherical robot

based on conservation of angular momentum will perform better than a spherical robot

based on barycenter offset. In order to do this, the first step must be to determine

what is actually being compared between the two systems and what defines a better

performance. An analogy between two automobiles can be used to illustrate how the two

types of robotic designs will be compared. How would a scientist compare an extremely

light weight automobile versus a large sedan. The light weight automobile may be able to

accelerate faster from resting, but may have a slower top speed than the sedan. The small

automobile may be able to have a smaller turning radius, but the sedan may be able to

handle turning with more weight on board. How can one be defined as having a better

performance? They are both differently vehicles for different types of transport and have

different characteristics. A small vehicle provides a certain need to the customer as does

a large vehicle. Similarly, a spherical robot with a conservation of angular momentum

based design will have different parameters than a barycenter offset design, but each will

have its own specific set of advantages and disadvantages.
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3.1 Introduction

Chapter 1 discussed the state of the art of actively driven spherical robots, and Chap-

ter 2 discussed a theoretical actively driven system composed of a pair of SP-VSCMGs

operating out of phase. In order to evaluate the performance of the Dual SP-VSCMG

system, it must be compared to a barycenter offset system. With the theoretical Dual

SP-VSCMG system introduced in Chapter 2, Chapter 3 will discuss the methods of using

parametric analysis to improve the design and the fundamental equations related to the

analysis. The analysis parameters will include, but are not limited to, peak and average

torques, weight, velocity curves, acceleration curves, maximum incline, physical geome-

try, CMG geometry, and power considerations. Some of the design parameters that need

to be calculated will be the spatial envelope in which a CMG occupies as it rotates, the

weight of the sytem and the individual sub components, the maximum speed and torque

of the motors, the physics of the robot on an incline, the bob size and weight, etc. A list

of equations discussed throughout Chapters 1-3 will be summarized at the end of this

chapter.

3.2 Key Elements to Model

In order to decide what aspects of the robot’s construction need to be enhanced,

the overall performance of the robot needs to be modeled. In a spherical robot, the

main things to examine are power consumption, speed, and agility since other charac-

teristics are simply derivations or combinations of those three main principles. Power

consumption will be defined as the power and energy needed to maneuver the robot at

the intended speed set out in the design. Speed is defined as the tangential velocity of

the robot along its plane of travel. This is not to be confused with rotational speed of the

robot. Due to equation of v = ωRo, two balls of varying outer radii may have the same

tangential velocity if the angular velocity changes. This means that the angular velocity

is a design parameter, and the tangential velocity is a performance parameter. Agility

is how graceful the robot behaves and how quick and nimble it is. For example, does
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it have a large or small turning radius? What is the stopping distance? Can it change

direction instantaneously or does it need to reconfigure its position to traverse a different

direction. Other important parameters to consider consist of, but are not limited to,

incline plane, translational velocity and translational acceleration. In order to discuss

the enhancements further, it would be best to have a clear understanding of the physics,

orientations, and variables of the Dual SP-VSCMG system. The rotation of the system

will be the first to be explained. A visual representation of the coordinate system is show

in Figure 3.1. The bodies are as previously described, with the addition of two rotors and

two gimbals, the second scissored pair. The rod is body 1, and has for gimbals attached

to it, bodies 2A-2D. Attached to each gimbal is a rotor, bodies 3A-3D. Each body has

its own frame, ê(n). Each rotor will spin about its own ê
(3n)
1 -axis, in either a positive or

negative direction depending on the configuration of the system. Each gimbal will rotate

about its ê
(2n)
2 -axis, and the rod will rotate about its ê

(1)
3 -axis. The torque along this

direction is what propels the robot forwards and backwards.

Figure 3.1: Layout of a dual, scissored-pair system in a spherical robot. The ê
(3n)
1 axis is

the direction of rotor torque, ê
(2n)
2 , the direction of gimbal torque, and ê

(1)
3 , the direction

of output torque.
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3.3 Description of the Three Types of Models

The basis for a barycenter offset model is pictured in Figure 3.2. Pictured is the outer

shell radius, Rshell, the bob, the armature, the rod, and a physical placeholder for an

output motor. The bob is the weighted mass that gives the output torque most of its

value, and is currently pictured parallel to the horizon. At this position, the bob can

generate the most torque on the motor. The armature connects the bob to the output

rod. The output shaft goes through the diameter of the sphere and is connected to the

output motor, which is turn drives the outer shell.

Armature

Output Motor

Rod

Rshell

Bob

Figure 3.2: Basic barycenter offset model showing the outer shell radius, the bob, the
center rod, the armature holding the bob, and the output motor that connects the rod

to the outer shell

A basic SP-VSCMG model is pictured in Figure 3.3. Pictured is the outer shell

radius, Rshell, the CMGs, the rod, and a placeholder for an output motor. The CMG

is the weighted mass that gives the output torque part of its value. The CMG spins in

both directions which are orthogonal to the output rod. As the CMGs spin, a precession

torque is generated along the direction of the output rod allowing the robot to spin. In

this case, the armature is the C-shaped device holding the CMG to the output rod.

A DSP-VSCMG model is pictured in Figure 3.3. Pictured is the outer shell radius,

Rshell, the CMGs, the rod, and a placeholder for an output motor. The CMG is the
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Output Motor

Rod

Rshell

CMG

Figure 3.3: Basic SP-VSCMG model showing the outer shell radius, the CMGs, the
center rod, and the output motor that connects the rod to the outer shell

weighted mass that gives the output torque part of its value. The CMG spins in both

directions which are orthogonal to the output rod. As the CMGs spin, a precession

torque is generated along the direction of the output rod allowing the robot to spin. In

this case, the armature is the C-shaped device holding the CMG to the output rod. The

DSP-VSCMG is similar to the SP-VSCMG except there are two pairs of CMGs instead

of one.
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Output Motor

Rod

Rshell

CMG

Figure 3.4: Basic Dual SP-VSCMG model showing the outer shell radius, the CMGs,
the center rod, and the output motor that connects the rod to the outer shell

3.4 Modeling Power Consumption

At is current level of design, the power consumption is modeled at a high level. A

manufacturable design will have many additional components modeled into it such as

motors, bearings, gears, etc. All of these will have an effect on the power required

to control the robot. At this current stage, a system level model will provide suitable

information to determine the power needs of the robot. The system level model for the

spherical robot will be a simple configuration: a battery provides power to the motors,

the motors rotate the CMGs, and mechanical constraints provide power to the output

shaft due to the laws of conservation of angular momentum.

The first step in modeling the power is to determine how much power is required by the

battery. The battery is converted to mechanical energy by the motors with an efficiency

loss, the motors transfer the mechanical energy to rotational energy with some energy

loss (not modeled), and the rotational energy position is changed through mechanical

constraints with some energy loss (not modeled).
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However, for the system level model, it will be assumed that the final manufacturable

design of the system will be made as power efficient as possible. The following assumptions

will be made. First, there will be no loss of energy through the wiring from the batteries

to the motors. This loss will be small in the final design, but will be ignored at this

state. There will be no power loss from the motor to the CMG’s, however, there will be

an efficiency coefficiant correlated to the motors. This means that it will take energy to

convert the electrical power from the batteries to the motor, but it will not take extra

energy to transfer the motor energy to the CMGs. Thirdly, there will be no loss in the

mechanical system between the rotation of the CMGs and the power seen at the output

shaft. In the final design, gears, bearings, and friction will have increased this loss but is

neglected at this point.

The derivation of the equation used to estimate power is show in the text below.

Firstly, we have assumed that there is no loss between the battery and the motor. So

Pbattery = Pmotor

Factoring in the efficiency of the motor, the equation becomes

Pbattery ∗ ηmotor = Pmechanical

It is important to note that the efficiency of the motor, ηmotor, will be determined by

the properties of the motors described from the motor manufacturer. ηmotor may change

at certain RPMs and power levels. It is also assumed that the mechanical energy from

the motor will be stored in the CMGs as rotational power, Protational, without loss as seen

in the equation below.

Pmechanical = Protational = τoωavg

where ωavg is the angular velocity of the CMG over a period of time. Also, electrical
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Power is equal to

Pbattery = V I

Putting this altogether, these equations can be modeled as

V Iηmotor = τoωavg (3.1)

where τo is the torque along the rod on the ê
(1)
3 , or in other words the output torque.

3.5 In-Depth Look at Power Consumption Model

Assuming the model discussed above is accurate and discounting the losses from

friction, air, etc, discussed above, a more in depth modeling equation will be needed in

order to calculate power and torque requirements in real time. Since it is assumed that

the ball is rotating without unecessary friction, the torque of the system will only change

when the speed of the system changes. For example, if the ball is moving along at a

certain speed, the ball will continue to roll until friction slows it down. In this model,

friction is neglected, so the only force able to slow the ball down will be a torque in

the opposite direction. Below is the derivation of the equation that illustrates the power

required to change the velocity of the ball given a set of initial conditions.

Assume that ball is traversing on a flat plane. The outside shell of the ball will

be rotating and moving forward, thus having an angular and translational velocity. The

inside of the ball, the armature, will not be rotating and only have a translational velocity

associated with it. From modern physics, it has been proven that change in energy is

equal to rotational kinetic energy plus translational kinetic energy of the system.

∆KE =
1

2
msystemv

2 +
1

2
Iω2

system

and

∆KE = Work = Energy loss of a system



70

Expanding this equation know the fact that the armature of the ball is not rotating yields

∆KE =
1

2
Is(∆ω

2
o) +

1

2
mshell(∆v

2
o) +

1

2
marm(∆v2arm) (3.2)

where Is is the intertia of the shell. Since no outside forces are acting on the system,

torques generated on the output shaft are the only forces at work. This work can be

quantified as

W = τoθo

thus

∆KE = τoθo (3.3)

Substitutin in (3.1) into 3.3 yields

∆KE =
V Iηmotorθo

ωavg
(3.4)

The translational velocity of the shell and the armature are the same since the are at-

tached, the translational velocites can be combined. Furthermore, the mass of the shell

plus the mass of the armature is equal to the mass of the entire system. Combining these

elements and substituting (3.4) into 3.2 yields

(
1

2
Is(ω

2
o,f − ω2

o,i) +
1

2
mnet(v

2
o,f − v2o,i)

)
∗ ωavg

θoηmotor
= V I

Also

(ω2
o,f − ω2

oi
)

2αo
= θo

so
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(
1

2
Is(ω

2
o,f − ω2

o,i) +
1

2
mnet(v

2
o,f − v2o,i)

)
ωavg2αo

η(ω2
f − ω2

i )
= V I

Multiplying coeffiecients through in the numerator and substituting in v = ωr yields

(
Is(ω

2
o,f − ω2

o,i) +mnetR
2
o(ω

2
o,f − ω2

o,i)

)
ωavgαo

η(ω2
f − ω2

i )
= V I

Simplifying this equation gives an equation for estimating the power of the system at

finite point in time

(Is +mnetR
2
o)ωavgαo

ηmotor
= V I (3.5)

An alternate form of this equation that will be useful to determine power usage over

a period of time which can be solved knowing that

ωf − ωi
t

= α and
ωf + ωi

2
= ωavg

(Is +mnetR
2
o)(ω

2
o,f − ω2

o,i)

2tηmotor
= V I (3.6)

3.6 Modeling CMG Power Usage

The rotational kinetic energy used to bring a CMG’s rotational velocity from 0 rad/sec

to ω rad/sec is

Er =
1

2
Irω

2
r (3.7)

In each of the oscillation states, the rotational velocity goes from +ωs to −ωs and

from −ωs to +ωs meaning that the total energy used by the CMGs in one rotation of θI

is
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∆KE = 4Irω
2
r (3.8)

This energy is dissipated over a period of 2π, or one full rotation of the gimbals. The

time it takes to dissipate the energy is determined by the gimbal rate, or

t =
2π

ωg
(3.9)

meaning that the power used to spin the CMGs for one cycle of a SPVSCMG system

is

Pr = 4Irω
2
r

(ωg
2π

)
(3.10)

3.7 Modeling Translational Velocity

Translational velocity can simply be described as

ωf = ωi + αt and
τ

I
= α

yields

ωf = ωi +
τ

I
t (3.11)

Furthermore, this equation can also be used with (3.5) and 3.6 to determine how much

power is required to accelerate to the final angular velocity. Also, the translational

velocity can be determined simply by using v = ωr.

3.8 Maximum Inclined Plane

The maximum plane of incline is also important to determine when doing physical

modeling of the robot. Creating a set of equations corresponding to the incline will allow

the modeling enviroment to solve for the amount of torque need to move the robot up

an incline, which then can be used to solve for the amount of power needed. A picture

of the robot traversing up an incline is shown in Figure 3.5.
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Figure 3.5: Force diagram of a spherical robot rolling up an incline, φinc

The torque acting on the output shaft from gravity can be described as

τgravity = mnetgRo sinφinc (3.12)

where mnet is the total mass of the robot, Ro is the radius of the outer shell, φinc is the

incline, and τgravity is the torque applied at the center point of the robot due to gravity.

Assuming no loss from friction or air, the only other torque acting on the output shaft is

the torque generated by the drive mechanism on the inside of the ball, τo. This torque

can be from any type of drive system. In this instance, it can be from either a barycenter

offset system or a Dual SP-VSCMG system. Consider a situation where a spherical robot

is motionless on an inclined plane. For the robot to remain in its position, the sum of the

torques must equal zero. If the robot is to accelerate upwards, the torque output by the

drive mechanism must be greater than the torque from gravity. Using these conditions,

we can solve for the an estimation of the maximum slope that the robot can accelerate

up by the method below.
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τo − τgravity = ∆τ (3.13a)

Set ∆τ to 0 to solve for stall torque (3.13b)

τo − τgravity = 0 (3.13c)

τo = mnetgRo sinφinc (3.13d)

τo
mnetgRo

= sinφinc (3.13e)

sin−1 τo
mnetgRo

= φinc (3.13f)

Equation 3.13f can be examined further by evaluating τo for a barycenter offset and

a Dual SP-VSCMG system. The examination of a barycenter offset system is described

below. For a barycenter offset system, it has been proven in this document that

τo = marmgrcm,arm ∗ sin(θb)

where m is equal to the mass of the bob and the armature, r is equal to distance of the

center of mass of the bob and armature combined to the epicenter of the robot, and sin θb

is equal to the angle between the armature and direction of gravity. For modeling, it is

assumed that θb is always 90, and thus sin θb is always 1. It is also assumed that the mass

of the enitre robot, mnet, is equal to the mass of the arm, marm, plus the mass of the

outer shell, mshell. Incorporating this information into equation 3.13f yields

marmrcm,armg sin θb(
marm +mshell

)
gRo

= sinφinc (3.14a)
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Manipulating this equation yields

sin−1 1(
1 +

mshell

marm

)(
Ro

rcm,arm

) = φinc (3.14b)

Plotting φ = arcsinx, where −π < x < π, yields the graph shown in Figure 3.6. As

x nears 1, φ becomes closer to 90 degrees, meaning that the robot can climb a steaper

slope as x becomes closer to 1. Examing equation 3.14b shows that as the denominator

becomes closer to 1, the robot will have the ability to climb up a steeper slope. The

denominator of equation 3.14b can never be less than 1 as the ratio of the mass of the

outer shell to the mass of the armature will never be massless, and the ratio of the radius

of the outer shell to radius of the center or mass of the armature will always be greater

than 1 since the armatures center of mass can not exist outside of the outer shell. This

means that 0 < x < 1 and thus 0 < φ <
π

2
. By using equation 3.14b, a fair estimation

of the maximum incline that a barycenter offset spherical robot can climb up can be

calculated.

−1 −0.75 −0.5 −0.25 0 0.25 0.5 0.75 1
-1.5708

-0.7854

0

0.7854

1.5708

x

T
h
et

a

Plot of arcsin(x)

Figure 3.6: Behavior of generic equation, y = arcsinx. Notice the asymptotes at 1 and
-1, which indicates the robot would be climbing up a 90 degree slope.

Simlarly, we can substitute the torque output equation for a SP-VSCMG system into
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equation 3.13a to yield

sin−1 |2Irαr sin θg + 2Irωrωg cos θg|
mnetgRo

= φ (3.15)

for a non-ideal system and

sin−1 |2Irωrωg cos θg|
mnetgRo

= φ (3.16)

for an ideal system.

The addition of the ∆τ term from equation 3.13a is needed in order to evaluate

the arcsin function in the domain of −1 to 1. If the ∆τ term was not included, the

function would return imaginary results. For a Dual SP-VSCMG system, the τo term is

dynamic, meaning it changes depending on the state of the system. For that reason, a

generic equation can not be used to model the maximum incline, but it can, however, be

calcluated in real time when the system conditions are known.

3.9 Modeling Maximum Step Size From Rest

Figure 3.7 illustrates how a spherical robot will climb a slope from rest. Image 3.7 a.

shows the robot resting up against the step. As it attempts to move forward, it will roll

up the step. Assuming no slippage, the outer shell of the robot will pivot at the highest

point of the step, and the inner armature, either a SP-CMG or a barycenter offset system,

will not rotate as shown in 3.7 b. Finally, the robot will end its climb of the step with

the outer shell rotated 90 degrees and the inner armature remaining unrotated as shown

in 3.7 c. A view of the forces in action can be seen in 3.8.

hstep

(a) At rest

hstep

(b) Ascending

hstep

(c) Stopped

Figure 3.7: Behavior of a spherical robot ascending a step
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hstep

Rshell

mnetg

Fo =
τo

Rshell

Fg = mnetg cos θc

Rshell − hstepθc

Figure 3.8: Forces acting on a spherical robot ascending a step

From Figure 3.8, we can determine that

sin θc =
Rshell − hstep

Rshell

(3.17a)

Fg = mnetg cos θc (3.17b)

Fo =
τo

Rshell

(3.17c)

In order for the robot to climb over the step, pivoting about the highest point of the

step, Fo must be greater than Fg. In other words, τo − τg > 0. It can also be said that

for equilibrium , τg = τo. We can solved for the minimum step size a system can roll over

by expanding this idea, which yields

τo −Rshellmnetg cos

(
arcsin

(
Rshell − hstep

Rshell

))
= 0 (3.18)

Using the trig identity

cos arcsinx =
√

1− x2 (3.19)

and the quadratic equation, we can solve for hstep
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hstep = Rshell ±

√(
R2
shell −

τ 2o
m2
netg

2

)
(3.20)

To examine this idea further, we can plug in the output torque equation for a barycenter

offset design into (3.20) which yields

hstep = Rshell −

√(
R2
shell −

r2cm,bobm
2
armg

2

(marm +mshell)2g2

)
(3.21)

Let us then assume that the designer of the system can minimize the weight of the shell

to near zero and thus mshell becomes zero. We can then simplify the equation to become

hstep = Rshell −
√
R2
shell − r2cm,bob (3.22)

Now, lets take this one step further and say that r2cm,bob is a percentage, x, of Rshell. We

can then manipulate the equation in the following manner.

hstep = Rshell −
√
R2
shell − (xRshell)2 (3.23a)

hstep = Rshell −
√
R2
shell − x2R2

shell (3.23b)

hstep = Rshell −
√
R2
shell(1− x2) (3.23c)

hstep = Rshell −Rshell

√
1− x2 (3.23d)

hstep = Rshell(1−
√

1− x2) (3.23e)

From (3.23e) we can see that as x becomes closer to 1, hstep will increase. This is

shown in the graph of (3.23e) is shown in Figure 3.9. It is important to note that the

hstep becomes imaginary when x is greater than 1. This is because physically, a ball can

not climb a step with a height that is greater than radius. In a barrycenter offset design,

the rbob will never equal Rshell, meaning that the center of gravity never exists outside

of the shell. However, in a SP-VSCMG design, it can. This means that a SP-VSCMG

design can overcome a step size equal to that of its outter radius. This can be shown by



79

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

Rbob as a % of Rshell

S
te

p
S
iz

e=
y
*R

Step Size vs %R

Figure 3.9: Step size a spherical robot can ascend based on the offset of the barycenter
as a percentage of the shell radius.

substituting in the output torque of a SP-VSCMG design into (3.20).

3.10 Defining Volumes for Parametric Analysis

The volume of the robot can be modeled by examing the geometry of the components.

In this section, the following geometries will be examined:

Vrobot = The volume of the robot

Rshell = The radius of the robot shell (m)

Vbound = An imaginary sphere inside Vrobot in which a CMG can rotate without

obstruction

Rbound = The radius of the imaginary CMG bounding sphere.

hCMG = The height of the cylindrical CMG as show in Figure 3.10

rCMG = The radius of the cylindrical CMG as show in Figure 3.10

3.10 Determining Inertia of CMG

As the CMG spins about the 1-axis, it will also rotate about a perpendicular axis,

the 2-axis. The CMG will require a free space to rotate about the 2-axis (axis of gimbal

torque), and this is called the bounding sphere as shown in Figure 3.10. In order to

enhanced the performance of the system, the CMG inertia must be maximized while still
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being constrained to the geometrical limitations of the bounding sphere. To calculate

this, we will assume a standard CMG shape of a cylinder, which is the standard shape

used in practice. Other shapes may be used, but a cylinder is used so that the system is

balanced.

rcmg

Rbound

hcmg

Figure 3.10: Slice of a CMG in an imaginary bounding sphere. The CMG (rectangle)
rotates about the center point

Using the Pythagorean theorem in reference to figure 3.10, we can see that

1

4
h2CMG + r2CMG = R2

bound (3.24a)

or

hCMG = 2
√
R2
bound − r2cmg (3.24b)

We also know that inertia is a function of the height and the width of the CMG. Knowing

this, we can calculate the inertia for a CMG depending on its geometry. In this example,

we will use a solid disc as the geometry. Inertias for other geomtries, such as spoked ring,

can be used by doing similar calculations as shown below. The rotational inertia for a

disc (see Figure 3.1 for dimensions) are as follows:

Ix =
1

2
mCMGr

2
CMG (3.25a)

Iz = Iy =
1

12
mCMG(3r2CMG + h2CMG) (3.25b)
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Mass of the CMG is

mCMG = ρπr2CMGhCMG (3.26a)

or

mCMG = 2ρπr2CMG

√
R2
bound − r2CMG (3.26b)

Substituting (3.26b) into equations 3.25 yields

Ix = ρπr4CMG

√
R2
bound − r2CMG (3.27a)

Iz = Iy =
1

6
ρπr2CMG(4R2

bound − r2CMG)
√
R2
bound − r2CMG (3.27b)

These equations can be substituted into the master torque equation, (2.33) to adjust the

weight, torque and size of the CMG for enhanced performance. The analysis parameters

will depend on what the design of the systems requires. For example, in order to gain

more torque from the system, the weight and size of the CMG may increase. An example

of this will be shown in the results portion of this document.

3.10 Determining Bounding Sphere Size

Next, it is neccessary to calculate the maximum size of the bounding sphere that can

fit inside of spherical shell. For the best results, the design should be symmetrical about

the axis of rotation. This document has briefly discussed a SP-VSCMG and a Dual SP-

VSCMG design, each having two and four internal gyroscopes, repsectively. Given the

outer shell radius, Rshell, we can calculate the maximum size of the bounding sphere sizes

of each design. A cross section of both of the designs is shown in Figure 3.11, illustrating

the outer shell radius and the configuration of the respective bounding spheres.
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Figure 3.11: Cross sections of bounding spheres illustrating the configuration that yields
the largest bounding sphere size

From the geometry we can figure out the maximum bounding sphere size possible

given the radius of the outer shell. The respective bounding sphere sizes in terms of the

outer shell radius are:

Rbound,dual =
Rshell

2
(3.28)

Rbound,quad =
Rshell

(1 +
√

2)
(3.29)

3.11 Defining Barycenter Offset Models

In order to evaluate the performance of a Dual SP-VSCMG design, the parameters

must be compared to a control group. The control group for this examination will be

calculated from a a barycenter offset spherical robot with varying bob sizes. There is a

trade off between bob sizes inside of barycenter offset designs. The heavier that the bob

is, the more torque the drive train can generate. However, the larger the bob, the shorter

the offset of the center of gravity, meaning less torque. This is illustrated in figure 3.12.

As the bob size increases, so does the space that it takes up. This visual representation

is shown in Figure 4.1. We know that the torque from a barycenter offset system is

τmax = mbobg(Rshell − rbob) (3.30a)
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and the mass of the bob is equal to

mbob =
4

3
πρr3bob (3.30b)

So it can be said that

τmax =
4

3
πρgr3bob(Rshell − rbob) (3.30c)

The normalized plot of (3.30c) is shown in figure 3.12. It can be seen that τmax is

at its greatest when rbob = 0.75Rshell. This can also be solved be taking the derivative

of (3.30c). From the plot, we will select 4 bob sizes to compare the Dual SP-VSCMG

models to. The first will be when rbob = 75%Rshell because it is the the solution for

maximized torque. The second, third, and fourth will be when rbob is equal to 50%Rshell,

33%Rshell, and 25%Rshell. This is visually represented in Figure 4.1 as well as graphically

represented in Figure 3.12 as red dots.
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Figure 3.12: Torque output based on the bob radius, where the bob radius is a
percentage of the the outer shell radius
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75%

(a) .75Rshell

50%

(b) .50Rshell

33%

(c) .33Rshell

25%

(d) .25Rshell

Figure 3.13: Visual reference of different bob sizes (gray) in a barycenter offset system.
Electronics and motors must be able to fit into the remaining space (white)

3.12 Determining CMG Motor Torque

The CMG motor heavily effects the rate at which the ωr can change direction, which

directly effects ωg and θg. The Λ2 state is the behavior that will be used for this exami-

nation of the CMG Motor Torque. The controls signals for the ∆2 state were describe in

an ideal environment, meaning that −ωs could go to ωs instantaneously. In reality, this

is not the case. A non-ideal (realistic) control situation can be seen in figure 3.14. It is

important to notice that this control behavior is for one SP-VSCMG. The second SP-

VSCMG system would behave the same as this system, just out of phase by 90 degrees.
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Figure 3.14: This figure shows the non-ideal (realistic) behavior of the Λ2 oscillation
state shown in figure 2.16. This behavior incorporates the ramp up and ramp down

time for αs and ωs

The the x-axis of figure 3.14 is time independent. The timing depends on both ωg

and τr (the torque fo the rotor motor). The total time it takes for one full cycle of the

system will be described tE, or the event time. In other words this means that θg will
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traverse 2π radians. For computational purposes, one half of the event time, or the time

it takes θg to traverse from 0 to π, will be described as te. Figure 3.15 shows how the

time scale is effected by ωg and τr. Using this figure as a reference, we can calculate the

tE and τr.
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αs,max

CMG Acceleration

−ωs,max
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CMG Angular Velocity

0 te tE
0

π

2π

Theta

Figure 3.15: This figure is an isolated view of 3.14 showing the parameters of the CMG
motor and how they directly effect the timing of the DSP-VSCMG system.

Using the standard equation for rotational velocity, we can deduce

ωgte = θg (3.31a)

te =
π

ωg
(3.31b)

or

tE =
2π

ωg
(3.31c)
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when the system is the in the ∆2 steady state. This will be the minimum value for tE

since the system will be oscillating at its fastest speed. We also know

τr = Irαr (3.32a)

τr
Ir

= αr (3.32b)

Examining figure 3.15 we can see that 1 total oscillation of the system can be broken

into 2 different events. The state of the system from π to 2π is the same state of the

system from 0 to π with the polarities reversed. Mechanically speaking, this means that

the motors will just be spinning in the opposite direction. For calculation purposes, we

can examine the system from π to 2π to ease calculations. Doing so, we can find the

torque needed for the input motors of the system.

ωf = ωo + αte (3.33a)

ωr,max = −ωr,max + αrte (3.33b)

2ωs,max = αrte (3.33c)

Substituting in equation (3.31b) and (3.32b) yields

2ωs,max =
τr
Ir

π

ωg
(3.33d)

or

2ωrωgIr
π

= τr (3.33e)

3.13 Process for Parametric Analysis

Following the modeling flow chart will allow a barycenter offset type of system to

be compared to a CMG type of system. The flow chart is shown in Figure 3.16. The

output of the flowchart will be different models of the barycenter offset and conservation

of angular momentum type of spherical robots.

The first step is to determine the size of the outer shell. This constraint will be set
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against all models, and will allow us to compare the power that can be contained inside

a fixed volume. The next step will be to design rough physical models in CAD. The

CAD software will allow us to calculate parameters that would otherwise be difficult

to calculate: inertia, mass, etc. Once the that is done, we can then calculate final

characteristics of each of barycenter offset and CMG design.

The barycenter offset designs can consist of any bob size, but the results in the

following chapter will focus on 35% and 25% the size of Rshell. A bob size of 25% would

be an ideal embodiment of a barycenter offset design, and a bob size of 35% represents a

realistic embodiment that is seen in practice. Due to the equations defined throughout

this document, the peak torque, average torque, weight, velocity curves, acceleration

curves, and maximum incline for each barycenter offset embodiment can be calculated

without the use of simulation. We can use these values to see how these designs compare

to the COAM designs.

For the SP-VSCMG and Dual SP-VSCMG designs, we will first have to determine the

bounding sphere of each. We can then choose a CMG geometry that will maximize the

inertia. From that, the physical models can be created. With simulation, we can then

calculate the same parameters as the barycenter offset design for comparison. However

ωr, αr,ωg, and αg are subject to interpretation. This is due to the fact that these values

will be based on the type of motor selected in the design. For these parameters, we will

select fair values that are achievable with current technology.
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Figure 3.16: Organizational flowchart of parametric analysis

3.14 Summary

In this chapter the key elements to perform a proper modeling simulation were dis-

cussed and derived. A general overview of how a barycenter offset, SP-VSCMG, and

DSP-VSCMG system was discussed. Output power was also modeled for each system as

seen from the output motor (equation 3.1). The power was also described in terms of

parameters of the robot (equation 3.6). Also, the equation for the translational velocity

(equation 3.11) was also described. An important factor in comparing cross platform

designs, inclined planes (equation 3.13f) and maximum step size (3.20), were described.
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Some analysis parameters of the design were also discussed. The volume of the robot

relates to the size of the outer shell, the weight, and the internal mechanics. With the

modeling parameters and functions described, the next chapter will describe the perfor-

mance characteristics of the three robot designs, parametric analysis of the individual

designs, and how varying single parameters can effect the performance of the robot as a

whole.
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Chapter 4: Comparison and Results of Spherical Robot Designs

Chapter Abstract

With the theory and operating equations of both barycenter offset and CMG based spher-

ical robots described in previous sections, the next step is to analyze the derived equations

and determine how varying parameters will effect the each system. This research seeks

to determine how a CMG based design compares to a barycenter offset design. Although

this research does not exhaust all possible configurations of a CMG based robot, the

examples shown are indicative of how a CMG based design can be enhanced to perform

as well as or better than a barycenter offset based design. As with the design of any

robotic or vehicular system, the designer must first determine what type of conditions

the vehicle or robot will operate it. Should the car be able to traverse potholes greater

than one meter in diameter? If so, then the tires should be large enough so they do not

become stuck in the hole. Similar rules apply to a spherical robot. If the robot is to be

able to drive over a one meter hole, it must be larger enough and have enough power to

climb out of the hole.
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4.1 Introduction

In this section, the equations discussed in the previous chapters will be used to com-

pute initial physical models of barycenter offset and CMG based designs. In the following

sections, single parameters of the robot will be varied in order to determine the effects

on the system as whole. Outer shell size, mass, output motor RPM, CMG speeds and

geometries will be examined to determine the effects on robot incline, step size, power

usage, and speed. From the graphs created, the performance between the VSCMG mod-

els and the barycenter offset models can be compared. The CMG based models will be

compared to a barycenter offset model with a bob radius of 33% that of the outer shell,

which is an informed estimate based on current designs. An illustration of these models

was presented in Figure 4.1. A SP-VSCMG model consists of a single scissored pair, and

a DSP-VSCMG consists of two scissored-pairs. Conclusions between the two models will

also be discussed, as well as alternative design considerations.

Figure 4.1: Photo of a barycenter offset, SP-VSCMG, and DSP-VSCMG spherical robot
model

4.2 Initial Results

In order to make a proper comparison between each uniquely functioning designs, as

many design parameters as possible must be kept the same in order to avoid confounding

the results. The first set of design parameters that will be set are the geometric constraints

(shown in table 4.1), which determine the size and space claim of the robot. The variables

are as follows: vmax is the maximum translational velocity of the ball, rshell is the radius

of the outer shell, rthick is the thickness of the outer shell, mshell is the thickness of the
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outer shell, ρshell is the average density of the shell, ρbob and ρrotor are the average densities

of the bob and rotor, respectively, and rr/rbound is the size of the rotor radius divided

by the bounding sphere radius. These are the geometric properties that are universal to

each design. Properties such as rotor size are specific to CMG based designs and will

be investigated during the appropriate section. The initial geometric constraints were

chosen by examining real world designs and estimating realistic criteria for the robot to

meet: a top speed of 5.36mph, a shell made of carbon fiber, a bob and CMGs made of

brass, etc.

Table 4.1: Initial Geometric Constraints

vmax rshell rthick mshell ρshell ρbob ρrotor rr/rbound
(mph) (m) (m) (kg) (kg/m3) (kg/m3) (kg/m3) (-)

5.36 .1143 .043 1.217 1790 8470 8470 .88

Additionally, design constraints are set for initial evaluation. These constraints are

based on educated assumptions of existing technology that would be feasible to integrate

into a spherical robot. The design constraints shown in 4.2 are defined as follows: τr,max,

the maximum torque of the rotor motor; ωr,max, the maximum rotational velocity of the

rotor; τg,max, the maximum torque of the gimbal motor; ωg,max, the maximum rotational

velocity of the gimbal; τo,max, the maximum torque of the gimbal motor; ωo,max,the max-

imum rotational velocity of the output motor; deadband, the number of radians that the

rotors are accelerating or decelerating (when ωr is not at maximum); offset, the phase

between each scissored pair system of a dual scissored pair; and rbob/rshell, the radius of

the bob in terms of the percentage of the radius of the outer shell.

Table 4.2: Initial Design Constraints

τr,max ωr,max τg,max ωg,max τo,max ωo,max deadband offset rbob/rshell
(N ·m) (rpm) (N ·m) (rpm) (N ·m) (rpm) (deg) (deg) (-)

1 1000 1 60 1 200 180 90 .33

With the geometric and design constraints set, an initial cross platform comparison

can be made which is shown in table 4.3. Three designs are compared across six categories.
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The three designs are a base barycenter offset design, an ideal scissored-pair design, and an

ideal dual scissored-pair design. The ideal scissored pair designs reflect the best results

that can be achieved, whereas the non-ideal reflect the worst results. In these initial

results, only the steady state ideal cases are examined, but the steady state non-ideal

cases will be discussed at the end of this chapter. The main difference between ideal and

non-ideal system is the incorporation of the torque generated from the acceleration and

deceleration of the rotor as discussed in equation 2.28. The six categories of evaluation are

the total mass (mnet), the average incline (φinc), step size from rest (hstep), the power used

per 2π cycle (Pcycle), the average torque generated (τavg), and the peak torque generated

(τpeak). Finally, the relationship of φinc/Pcycleis also examined. This correlates to the cost

in power per degree of incline a system will use over one cycle of steady state operation.

Table 4.3: Initial Performance Characteristics

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 3.12 24.13 0.0100 33.25 1.43 1.43 0.73
SP (ideal) 8.52 23.92 0.0098 225.43 3.87 6.08 0.11
DSP (ideal) 9.53 16.45 0.0047 217.39 3.02 4.75 0.08

From the initial results, the barycenter offset design outperforms all of the CMG based

designs. However, a SP design with an ideal control system performs realitively similar

to a barycenter design although it does use more power. It also noticeable that as the

complexity of the design increases, the power cost per degree also increases. With the

initial results set up, we can examine enhancing the CMG based designs in order to out-

perform the barycenter offset design. However, with enhancements and experimentation

it will be possible to improve the performance of the CMG based designs.

4.3 Rotor Size

For the first enhancement, we will look at adjusting the rotor size. The rotor geometry

effects the total mass of the robot, as well as the torque output and power draw. Figure

4.2 shows the effects of adjusting rrotor/rbound on the average incline and power draw per

cycle of a SP-VSCMG system. From the graph we can see that when rrotor/rbound is
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equal to 0.96, the incline is maximized. Furthermore, the power draw is far less than its

potential maximum. Recomputing the performance characteristics with the new rotor

width yields the results shown in table 4.4 along with the corresponding differences from

the previous iteration. We can see the total power on a SP-VSCMG system was decreased

by 31.1W and 24.26W for a DSP-VSCMG system. Furthermore, the inclines increased

3.13deg and 2.18deg for a SP-VSCMG and DSP-VSCMG system, respectively. For future

calculations, the rrotor/rbound value used will be 0.96.
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Figure 4.2: Plot showing the effects of adjusting rrotor/rbound on the average incline and
power per cycle of a SP-VSCMG configuration

Table 4.4: Performance Characteristics and ∆’s from rrotor adjustment

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 3.12 24.13 0.0100 33.25 1.43 1.43 0.73
SP (ideal) 6.36 27.05 0.0125 194.35 3.24 5.09 0.14
DSP (ideal) 7.07 18.63 0.0060 193.13 2.53 3.97 0.10

∆mnet ∆φinc ∆hstep ∆Pcycle ∆τavg ∆τpeak ∆φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 0 0 0 0 0 0 0
SP (ideal) -2.16 3.13 0.0027 -31.08 -0.63 -0.99 0.03
DSP (ideal) -2.46 2.18 0.0013 -24.26 -0.49 -0.78 0.02
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4.4 Trade Off Between ωr and ωg

An additional enhancement to be examined is the trade off between ωr and ωg. The

magnitude of the output torque is based on a scalar factor of

2Irωr,maxωg (4.1)

as shown in equation 2.43. The power used per cycle is the power used by the output

motor (equation 3.1) plus the power used to spin the rotors up and down (equation 3.10)

plus the average gimbal motor power which is

τoωo,avg + 2Irω
2
r

(ωg
2π

)
+ 2τgωg,avg (4.2)

From these two equations, we can see that the magnitude of the output torque is

a linear relationship, while the power draw is a squared relationship. The correlation

between ωg and ωr is shown in figure 4.3. The magnitude of the torque was kept the same

while the gimbal rate (x-axis) was increased. Accordingly, the rotor rate was adjusted

to keep τo,avg the same magnitude. For a single scissored pair, We can see that as the

gimbal rate increases, the power per cycle increases as well. However, as the gimbal

rate approaches zero, the power also increases, meaning that there is a local minimum.

Searching for the local minimum shows that the power is improved when ωr = 638rpm

and ωg = 94rpm. The performance characteristics with these values as inputs are show

in table 4.5.

Table 4.5: Performance Characteristics with wg adjustment, single pair as baseline

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 3.12 24.13 0.0100 33.25 1.43 1.43 0.73
SP (ideal) 6.34 27.06 0.0125 182.52 3.23 5.08 0.15
DSP (ideal) 7.05 18.64 0.0060 207.37 2.52 3.96 0.09
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Figure 4.3: Plot showing the effects of adjusting ωg and ωr while keeping the same value
of τo,avg for a SP-VSCMG configuration. Local minimum may disappear with different

design constraints

The table illustrates that power for single scissored-pair system decreases 11.83W/cycle

whereas the dual scissored-pair increases 14.24W/cycle. The addition of the two extra

gimbal and rotor motors changes the local minimum of figure 4.3 when tested with a dual

scissored pair. The resulting values of ωr and ωg are 1035rpm and 58rpm, respectively.

Plugging in these speeds for a dual scissored-pair only yields the performance character-

istics shown in table 4.6. The performance ∆’s after adjusting ωg and ωr are showin in

table 4.7.

Table 4.6: Individually Optmized ωr and ωg for each design, separate baseline

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 3.12 24.13 0.0100 33.25 1.43 1.43 0.73
SP (ideal) 6.34 27.06 0.0125 182.52 3.23 5.08 0.15
DSP (ideal) 7.05 18.65 0.0060 192.83 2.52 3.96 0.10
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Table 4.7: ∆’s after ωr and ωg adjustments

∆mnet ∆φinc ∆hstep ∆Pcycle ∆τavg ∆τpeak ∆φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 0 0 0 0 0 0 0
SP (ideal) 0 0 0 -11.83 0 0 0.01
DSP (ideal) 0 0 0 0.30 0 0 0

4.5 Material Density

An important parameter to consider is material density, specifically the material that

the bobs are made of and the material that the CMGs are made from. Three plots are

presented in figure 4.4 with a varying value of ρ for a barycenter offset, scissored-pair, and

dual scissored-pair system. Each plot shows the total mass of system, the average angle

of inclination, and the angle of inclination per watt for a bob. The graphs show three

key results. The first and most obvious is that as the density of the material increases,

the mass of the system increases. The second is that as the density increases, the average

angle of inclination increases. The third, and most important fact is that for CMG based

designs, as the density increases, there exists a point where the power cost per degree of

incline begins to decrease. This means that after this point, increases the density of the

material makes the system less efficient.

Taking into account this key fact, the density of the CMGs was decreased to the

2700kg/m3, the density of aluminum. Although the most efficient density is around

2700kg/m3, aluminum was chosen because it is the closest, readily available material to

the best density. Doing this means that the CMG designs are operating in the area where

the effect of the weight on the system is most efficient. In general, decreasing the weight

results in a lower average angle of inclination. However, the speed of the rotors ωr can

be increased without a gain in power draw because the efficiency has been increased.

Changing the density of the CMG material to aluminum and increasing the rotor speed

to 1425rpm from 1035rpm yields the performance characteristics shown in table 4.8. The

∆’s from the last iteration to this one are shown in table 4.9.
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Figure 4.4: Plots showing the effects of adjusting ρbob and ρcmg

Table 4.8: Performance Characteristics with ρ adjustment

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 3.12 24.13 0.0100 33.25 1.43 1.43 0.73
SP (ideal) 2.85 27.37 0.0128 122.94 1.47 2.31 0.22
DSP (ideal) 3.07 19.43 0.0065 137.40 1.15 1.80 0.14

Table 4.9: Performance ∆’s after ρ adjustment

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 0 0 0 0 0 0 0
SP (ideal) -3.49 0.31 0.0003 -59.58 -1.76 -2.77 0.07
DSP (ideal) -3.98 0.78 0.0005 -55.43 -1.37 -2.16 0.04
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4.6 Conclusions and Results of Parametric Analysis

From these experiments, we can draw the following conclusions and comparisons be-

tween the three models. For the barycenter offset model, an incline greater than 30degrees

is hard to achieve, and as a the density of the bob goes up, the power efficiency goes down.

For a single scissored-pair design, it is more probable to achieve average angles of inclina-

tion above 30degrees by simply adjust the average rotor velocity, ωr but at a significant

power cost. However, the output torque will always have conditions that may result in

a zero output. Like a single pair design, a dual pair scissored-pair design will be able

to achieve average angles of inclination above 30degrees by adjusting ωr. However, a

dual-pair CMG system can be designed to have a continuous, non-zero output torque.

Fortunately, the CMG based designs can be modified to significantly reduce power

consumption at no cost to speed, agility, and average incline. Enhanced geometric and

design constraints deducted from the previous sections are show in tables 4.10, 4.11, and

4.12. The enhanced performance characteristics are shown in table 4.13. Table 4.14

shows the effects of the optmization techniques on the initial performance characteristics.

The table shows that the total mass and power draw of both scissored-pair systems were

decreased, while the average incline increased.

Table 4.10: Optimized Geometric Constraints

vmax rshell rthick mshell ρshell ρbob ρrotor rbob/rshell
(mph) (m) (m) (kg) (kg/m3) (kg/m3) (kg/m3) (-)

5.36 .1143 .043 1.217 1790 8470 2700 .33

Table 4.11: Optimized Design Constraints (Single Pair - Ideal)

ωr,max ωg,max τo,avg ωo,max deadband offset rr/rbound
(rpm) (rpm) (N ·m) (rpm) (deg) (deg) (-)

1090 78 3.23 200 0 - .96
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Table 4.12: Optimized Design Constraints (Dual Pair - Ideal)

ωr,max ωg,max τo,avg ωo,max deadband offset rr/rbound
(rpm) (rpm) (N ·m) (rpm) (deg) (deg) (-)

1934 44 2.52 200 0 90 .96

Table 4.13: Optimized Performance Characteristics

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 3.12 24.13 0.0100 33.25 1.43 1.43 0.73
SP (ideal) 2.85 27.37 0.0128 120.51 1.47 2.31 0.23
DSP (ideal) 3.07 19.43 0.0065 134.78 1.15 1.80 0.14

Table 4.14: ∆ Performance Characteristics

mnet φinc hstep Pcycle τavg τpeak φinc/Pcycle
(kg) (deg) (m) (W/cycle) (N ·m) (N ·m) (deg/W )

Barycenter 0 0 0 0 0 0 0
SP (ideal) -5.67 3.45 0.003 -105.43 -2.4 -3.77 0.12
DSP (ideal) -6.46 2.98 0.018 -82.61 -1.87 -2.95 0.06
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4.7 Consideration of Shell Size

A consideration to take into account is the size of the robot itself. Figure 4.5 shows

a normalized plot for each type of design, with a shell radius, rshell, varying from 0 to 1

meter. Each plot was created by employing the same design logic as described previously

in this document but varying rshell. The internal components are scaled proportionately

with increase in the shell size. The data from these simulations reflects two interesting

facts. First, is that regardless of the shell radius, the barycenter offset system’s angle of

inclination remains the same, whereas both CMG based designs have a greater average

angle of inclination as the shell size is increased. This shows that as the size of the robot

increases, the gyroscopic effects are more dominant than a pendulum’s effect. The second

fact is that a barycenter offset’s power cost per angle of inclination continues to decreases

as shell size increases, whereas both CMG based designs have a local maximum around

15cm.
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Figure 4.5: Plots showing the effects of adjusting rshell

We can also look at non-normalized plots of the angle of inclination and the power
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draw for each of the three models. The previous plots give information related to efficiency

which helps to enhance the design, whereas a non-normalized plot will help in designing a

system to specification. Figure 4.6 shows how the average incline for CMG based designs

increases significantly compared to a barycenter offset design, again showing that the

gyroscopic effects become dominant at larger scales. Also, figure 4.7 shows the power

draw for CMG designs is significantly larger than a barycenter offset design. So although

CMG based designs can traverse steeper incline, they are equally or less efficient than

barycenter offset models.
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Figure 4.6: Plots showing the effects of adjusting rshell on φinc
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4.8 Effects of Non-Ideal Scenarios

As previously mentioned, the results obtained are of an ideal scenario; the rotor speed

can instantaneously switch between −ωr and +ωr without accelerating. Recall that the

output torque for a single scissored pair is

τsp = 2IRωgωrcosθg (2.30)

The non-ideal output torque introduces a sin θg term to the equation which comes

from the acceleration and deceleration from the rotors - the changing value of ωr, αr.

τsp = 2Irωr,maxωg

{
sin θg
π

u(t) +
cosθg

2

}
ê
(1)
3 (2.43)

The theory of this phenomenon is discussed in Section 2.10. Its effect on the results

are entirely dependent on the control system. For example, if the ωg is relatively small,

the effect from αr will be small. One method of this would be to halt the scissored-pair

gimbals while the rotors are getting up to speed. In other words, ωg would be equal

to zero when αr would be high, resulting in a 0 value of the output torque. In a dual

scissored-pair setup, the second scissored pair could be generating torque while the first
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scissored pair is reconfiguring itself resulting in a continuous non-zero output.

Another solution to negating the effects of the αr would be to develop a dynamic

control system that satisfies all design equations simultaneously. The control signals

would be similar to those shown in figure 3.14. However, the zero crossing of the output

torque function would change in real time due to the changing acceleration as shown in

equation 2.40. This would result in a more complicated control system than discussed in

this document, but the base theory for developing a control system would be the same.

4.9 Design Considerations

Although a DSP-VSCMG design may outperform a barycenter offset design in terms of

agility and maximum incline, building such a platform is not trivial. A few techniques for

achieving an enhanced DSP-VSCMG design are discussed below. In practice, the motor

to spin the CMG is placed next to the CMG itself, as shown in figure 4.8. However, an

enhanced design would incorporate the motor on the inside of the gyro, as shown in figure

4.8. This will mean that each CMG module is balanced, and will not have an off-axis

weight. Further, the outer shell of the motor will also add to the Is value.

(a) Offset motor with counterbalance (b) Internal motor

Figure 4.8: Two concepts for attaching a CMG Motor

Another consideration is to use one motor to control θg. The design in this document

eludes to one input motor per CMG module. However, by connecting the motors together

through gears and setting their initial positions appropriately, θg can be controlled by

one motor. However, because the initial positions of the CMGs are mechanically set, this

may limit how the DSP-VSCMG system will oscillate. For example, if the system is set
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to oscillate in the ∆ state (Figure 2.16), the system may have to be physically changed

to operate in a different steady state.

Battery integration is obviously important to the design. There are two ways to

integrate a power system into the robot. A simple way would be to add a battery

hanging off the center axis. This would mean the battery would act as a bob, just like in

a barycenter offset model as shown in figure 4.9. This would mean that the system would

be a hybrid barycenter offset DSP-VSCMG design and come with appropriate benefits

and short comings: outputs more torque but uses more power, etc. An alternate method

would be to integrate the battery into the center rod, as shown in figure 4.9. This would

be a good equi-weight distribution design, as well as make the mechanics slightly less

difficult without having the added pendulum.

(a) Bob-style power source (b) Embedded power source

Figure 4.9: Two concepts for mounting a power source

4.10 Conclusions Between Models

The main goal of this work is to determine if a CMG based design can out perform

a barycenter offset design. The answer is yes, but not without cost. A barycenter offset

spherical robot has its advantages. It is a relatively simple design, with a relatively

simple control algorithm. As discussed in Chapter 1, there are many different methods

for designing a barycenter offset system, each with its own benefits and characteristics.

However, because of the mechanical constraints of the system, the design has fundamental

limitations: its center of gravity can never be outside of the shell, and thus, can not climb
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step inclines/slopes.

The CMG based robot design discussed in this entire document, is a new type of

design who’s limitations are based on technological, not physical, constraints. However,

the design is much more complicated than a barycenter offset system, as are the controls.

In this chapter, it is shown that with with proper parametric analysis and design, a

DSP-VSCMG system should be able to outperform a barycenter offset system, but a

DSP-VSCMG system needs more power to do so.

Although a CMG based design requires more energy in a continuous steady state,

there are methods to enhance the overall performance. CMG motor speed, construction

materials, and even the control system take part in the efficiency of the system, and thus

how much power is needed to operate it. A spherical robot will require a certain amount

of energy to traverse up an incline. If a barycenter system can not provide enough power

to traverse up the incline, a DSP-VSCMG system will be able to provide enough power

without having to change the overall dimensions of the robot. In essence, a DSP-VSCMG

design can pack more power inside the shell than a barycenter offset design.

4.11 Future Work

The next action of this research would be to further develop a physical prototype of

a scissored-pair system. A physical system could then be checked against the equations

discussed in this literature to further validate the underlying mathematics and dynamics.

Construction of a physical system will also give insight into other mechanical design

options, such as replacing motors with a system of gears in order to save power.

Another area of research stemming from this investigation would be the development

of a dynamic control system. This document explains the basis for controlling a SP-

VSCMG system, however, the control signals used in the results are determined before

the computations. In this basic control scenario, the rotors and gimbals are positioned

in such a manner that the system can enter a steady state easily. However, in a physical

prototype, a dynamic control system should be developed so that the system can enter a

steady state when the initial conditions are random, and not predetermined.
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Finally, a database of parts could be integrated into the simulation in order to have

a fully automated parametric analysis. In the scenarios discussed in this document, we

had the luxury of selecting any type of motor that was needed: low power, high torque,

for example. In practice, these numbers will be much less flexible and will be determined

by what items are commercially available. A parts list database could be checked during

parametric analysis so that the final resulting model would incorporate real components.

Another topic that must be investigated are controls in realistic scenarios and how to

subdue unwanted oscillations in the that may occur in the ê
(1)
2 and ê

(1)
1 directions.

4.12 Thesis Summary

Chapter one reviewed the current state of the art of spherical robotics. The review

looked over barycenter offset, shell transformation, and conservation of angular momen-

tum based designs. Barycenter offset model types consisted of hamster ball, IDU, pendu-

lum driven, double pendulum driven, shifting weights, and some notable enhancements

on each of these. Shell transformation designs discussed consisted of pressurized air blad-

ders and shape memory alloys. Conservation of angular momentum designs discussed

consisted of balancing robots, uni-dimensional conservation of angular momentum, and

tri-dimensional conservation of angular momentum. Lastly, added gyroscopic scissored

pairs as a momentary boost to a barycenter offset design was discussed.

Next, in chapter two, the theory of the scissored pair was discussed from first princi-

ples. The fundamental limitations of how much power could be transferred from the inner

mechanics to the outer shell of the robot was discussed. Following that, a brief review of

the physics of a control moment gyroscope was discussed which lead into the derivation

of key equations that drive the behavior and performance of the robot. Once the key

equation for the output torque of the robot was described, the nature of the equation was

examined through mathematics. This included, when to change the polarity of the CMG

spin, evaluating potential and average torque output levels. Also discussed were metrics

of the scissored pair behavior such as how long was the torque output below / above

average, periods of oscillation, and maximum angular velocity of the CMGs. Finally,
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dual configurations of scissored-pairs were discussed and evaluated with these metrics.

With the theory of the scissored pair evaluated, chapter three discussed modeling

and parametric analysis techniques of the robot. First, the key elements to model were

discussed along with the three types of models: barycenter offset, SP-VSCMG, and DSP-

VSCMG. Modeling of the power consumption was examined at a general and fine scale.

Also discussed was the modeling of the translational velocity, translational acceleration,

maximum ability to climb up an incline planed, and maximum step size from rest. Also

examined was how to better utilized the available volume of the robot by mathematically

determining CMG geometry. Finally the process for designing the robot was overviewed,

followed by a table comparing model parameters of the three different types of spherical

robots.

The final chapter examined the effects on the robot when various parameters were

changed: shell size, rotor speed, material density, and various power trade offs. The

effects of the changing parameters were also shown on the robot designs head to head.

The results showed that CMG based designs can outperform barycenter offset designs,

but require more power to do so. The document finished with a conclusion between the

models, future work, and a few alternative designs.
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The objective of this research is to compare barycenter offset based designs of spherical

robots to control moment gyroscope (CMG) based designs in order to determine which

approach is most effective. The first objective was to develop a list of current state of the

art designs in order to gain an overall understanding of what the obstacles in this area of

research were. The investigation showed that barycenter offset designs can produce a low,

continuous output torque, whereas CMG based designs can usually only produce a high,

momentary output torque. The second objective was to develop a CMG based design that

has the potential to outperform current state barycenter offset based designs. A design

consisting of a dual, scissored-pair CMG (DSP-VSCMG) configuration was proposed

and the dynamics derived from first principles. The third objective was to develop a

set of equations that can describe performance characteristics of spherical robots . The

equations that were modeled were power consumption, translational velocity, maximum

incline plane, step size from rest, as well as CMG inertias and geometries. The fourth

objective was to perform a series of parametric analysis using the developed equation

set to compare barycenter and DSP-VSCMG based designs in a controlled environment.

The analysis showed that DSP-VSCMG based designs can be more agile than barycenter

designs, but require more power to do so.
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