3,415 research outputs found

    Harnessing heterogeneous social networks for better recommendations: A grey relational analysis approach

    Get PDF
    Most of the extant studies in social recommender system are based on explicit social relationships, while the potential of implicit relationships in the heterogeneous social networks remains largely unexplored. This study proposes a new approach to designing a recommender system by employing grey relational analysis on the heterogeneous social networks. It starts with the establishment of heterogeneous social networks through the user-item bipartite graph, user social network graph and user-attribute bipartite graph; and then uses grey relational analysis to identify implicit social relationships, which are then incorporated into the matrix factorization model. Five experiments were conducted to test the performance of our approach against four state-of-the-art baseline methods. The results show that compared with the baseline methods, our approach can effectively alleviate the sparsity problem, because the heterogeneous social network provides richer information. In addition, the grey relational analysis method has the advantage of low requirements for data size and efficiently relieves the cold start problem. Furthermore, our approach saves processing time, thus increases recommendation efficiency. Overall, the proposed approach can effectively improve the accuracy of rating prediction in social recommendations and provide accurate and efficient recommendation service for users

    LRMM: Learning to Recommend with Missing Modalities

    Full text link
    Multimodal learning has shown promising performance in content-based recommendation due to the auxiliary user and item information of multiple modalities such as text and images. However, the problem of incomplete and missing modality is rarely explored and most existing methods fail in learning a recommendation model with missing or corrupted modalities. In this paper, we propose LRMM, a novel framework that mitigates not only the problem of missing modalities but also more generally the cold-start problem of recommender systems. We propose modality dropout (m-drop) and a multimodal sequential autoencoder (m-auto) to learn multimodal representations for complementing and imputing missing modalities. Extensive experiments on real-world Amazon data show that LRMM achieves state-of-the-art performance on rating prediction tasks. More importantly, LRMM is more robust to previous methods in alleviating data-sparsity and the cold-start problem.Comment: 11 pages, EMNLP 201
    • …
    corecore