16,107 research outputs found

    Remote pivot decoupler pylon: Wing/store flutter suppressor

    Get PDF
    A device for suspending a store from an aerodynamic support surface, such an an aircraft wing, and more specifically, for improving upon singlet pivot decoupler pylons by reducing both frequency of active store, alignment, and alignment system space and power requirements. Two links suspend a lower pylon/rack section and releasable attached store from an upper pylon section mounted under the wing. The links allow the lower pylon section to rotate in pitch about a remote pivot point. A leaf spring connected between the lower section and electrical alignment system servomechanism provides pitch alignment of the lower section/store combination. The servomechanism utilizes an electric servomotor to drive the gear train and reversibly move the leaf spring, thereby maintaining the pitch attitude of the store within acceptable limits. The damper strokes when the lower section rotates to damp large oscillations of store

    Observation and Understanding of the Initial Unstable Electrical Contact Behaviors

    Get PDF
    Reliable and long-lifetime electrical contact is a very important issue in the field of radio frequency microelectromechanical systems (MEMS) and in energy transmission applications. In this paper, the initial unstable electrical contact phenomena under the conditions of micro-newton-scale contact force and nanometer-scale contact gap have been experimentally observed. The repetitive contact bounces at nanoscale are confirmed by the measured instantaneous waveforms of contact force and contact voltage. Moreover, the corresponding physical model for describing the competition between the electrostatic force and the restoring force of the mobile contact is present. Then, the dynamic process of contact closure is explicitly calculated with the numerical method. Finally, the effects of spring rigidness and open voltage on the unstable electrical contact behaviors are investigated experimentally and theoretically. This paper highlights that in MEMS systems switch, minimal actuation velocity is required to prevent mechanical bounce and excessive wear

    Parametric study of two planar high power flexible solar array concepts

    Get PDF
    The design parameters examined were: frequency, aspect ratio, packaging constraints, and array blanket flatness. Specific power-to-mass ratios for both solar arrays as a function of array frequency and array width were developed and plotted. Summaries of the baseline design data, developed equations, the computer program operation, plots of the parameters, and the process for using the information as a design manual are presented

    Structure and mechanical characterization of DNA i-motif nanowires by molecular dynamics simulation

    Get PDF
    We studied the structure and mechanical properties of DNA i-motif nanowires by means of molecular dynamics computer simulations. We built up to 230 nm long nanowires, based on a repeated TC5 sequence from crystallographic data, fully relaxed and equilibrated in water. The unusual stacked C*C+ stacked structure, formed by four ssDNA strands arranged in an intercalated tetramer, is here fully characterized both statically and dynamically. By applying stretching, compression and bending deformation with the steered molecular dynamics and umbrella sampling methods, we extract the apparent Young's and bending moduli of the nanowire, as wel as estimates for the tensile strength and persistence length. According to our results, the i-motif nanowire shares similarities with structural proteins, as far as its tensile stiffness, but is closer to nucleic acids and flexible proteins, as far as its bending rigidity is concerned. Furthermore, thanks to its very thin cross section, the apparent tensile toughness is close to that of a metal. Besides their yet to be clarified biological significance, i-motif nanowires may qualify as interesting candidates for nanotechnology templates, due to such outstanding mechanical properties.Comment: 25 pages, 1 table, 7 figures; preprint submitted to Biophysical Journa

    A shape memory alloy adaptive tuned vibration absorber: design and implementation

    No full text
    In this paper a tuned vibration absorber (TVA) is realized using shape memory alloy (SMA) elements. The elastic modulus of SMA changes with temperature and this effect is exploited to develop a continuously tunable device.A TVA with beam elements is described, a simple two-degree-of-freedom model developed and the TVA characterized experimentally. The behaviour during continuous heating and cooling is examined and the TVA is seen to be continuously tunable. A change in the tuned frequency of 21.4% is observed between the cold, martensite, and hot, austenite, states. This corresponds to a change in the elastic modulus of about 47.5%, somewhat less than expected.The response time of the SMA TVA is long because of its thermal inertia. However, it is mechanically simple and has a reasonably good performance, despite the tuning parameters depending on the current in a strongly nonlinear way

    A foldable 4.27 meter (14 foot) spacecraft antenna

    Get PDF
    The problems and solutions associated with the design, fabrication, and testing of a large, lightweight, radial-rib, folding, spacecraft antenna reflector are discussed. The antenna reflector was designed as a highly efficient communications system for outer-planet missions extending as far as approximately 59.839 x 10 to the 11th power meters (40 astronomical units) from the sun. The methods used to obtain a lightweight precision rib surface, the evaluation and fabrication of the metallic reflector mesh surface, and the surface-evaluation techniques used on the assembled antenna reflector are included
    • ā€¦
    corecore