9 research outputs found

    Study on 3GPP Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications

    Full text link
    Little research has been done to reliably model millimeter wave (mmWave) path loss in rural macrocell settings, yet, models have been hastily adopted without substantial empirical evidence. This paper studies past rural macrocell (RMa) path loss models and exposes concerns with the current 3rd Generation Partnership Project (3GPP) TR 38.900 (Release 14) RMa path loss models adopted from the International Telecommunications Union - Radiocommunications (ITU-R) Sector. This paper shows how the 3GPP RMa large-scale path loss models were derived for frequencies below 6 GHz, yet they are being asserted for use up to 30 GHz, even though there has not been sufficient work or published data to support their validity at frequencies above 6 GHz or in the mmWave bands. We present the background of the 3GPP RMa path loss models and their use of odd correction factors not suitable for rural scenarios, and show that the multi-frequency close-in free space reference distance (CI) path loss model is more accurate and reliable than current 3GPP and ITU-R RMa models. Using field data and simulations, we introduce a new close-in free space reference distance with height dependent path loss exponent model (CIH), that predicts rural macrocell path loss using an effective path loss exponent that is a function of base station antenna height. This work shows the CI and CIH models can be used from 500 MHz to 100 GHz for rural mmWave coverage and interference analysis, without any discontinuity at 6 GHz as exists in today's 3GPP and ITU-R RMa models.Comment: To be published in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 201

    AMC Femtocell untuk Komunikasi Drone Frekuensi 5 GHz menggunakan AWGN Metode Selection Combining pada Lingkungan Bergedung

    Get PDF
    Perkembangan jaringan komunikasi seluler semakin meningkat. Penelitian ini melakukan analisa tentang jaringan komunikasi yang digunakan untuk komunikasi drone disekitar  gedung-gedung dengan cakupan femtocell. Frekuensi komunikasi yang digunakan adalah 5 GHz. AMC (Adaptive Modulation and Coding) yang digunakan memanfaatkan MCS (Modulation and Code Scheme) terdiri dari QPSK, 16QAM, dan 64QAM. Hasil penelitian menunjukkan dominasi persentase 64 QAM dengan coderate 4/5 pada SC sebesar 91%

    AMC pada UE Frekuensi 10 GHz melewati HetNet Microcell dan Femtocell menggunakan Metode SKE pada Lingkungan Bergedung

    Get PDF
    Sistem komunikasi bergerak berupa user equipment (UE) bergerak pada lintasan lurus diantara lingkungan bergedung.  Mekanisme difraksi karena pengaruh lingkungan bergedung yang dimodelkan menggunakan Single Knife Edge (SKE). Frekuensi komunikasi yang digunakan 10 GHz. Lintasan UE melewati HetNet (Heterogeneous Networks) yang terdiri dari microcell dan femtocell. Propagasi UE menggunakan kondisi uplink dengan kanal AWGN. Adaptive Modulation and Coding (AMC) yang menggunakan MCS (Modulation and Code Scheme). MCS tersebut terdiri dari QPSK, 16QAM, dan 64QAM. Sebagai hasil percentase cakupan pada penggunaan SC (Selection Combining) HetNet didapatkan sebanyak 94,03%, gNB1 microcell sebanyak 88,06%, dan gNB femtocell sebanyak 64,18%. Penggunaan selection combining HetNet dengan modulasi 64QAM sebanyak 67,16%, dan modulasi 64QAM dengan code rate 4/5 sebanyak 58,2%

    Receiver diversity with selection combining for drone communication around buildings at frequency 10 GHz

    Get PDF
    The communication network for cellular network keep development. This research analyzed about cellular network was used drone network. The mobile drone used frequency at 10 GHz for communication. The mobile drone moved around buildings. Buildings were used high variation. Base Station placed around building. This research was using macro diversity Base Station, variation building, variation modulation, and variation height of drone trajectory. Macro diversity mechanism used for that two Base Station. Selection Combining (SC) method was used for that macro diversity mechanism. The modulation communication based from Adaptive Modulation and Coding (AMC). Adaptive Modulation and Coding (AMC) was used Modulation and coding scheme (MCS). Modulation was used QPSK, 16 QAM, and 64 QAM. As the result described signal to noise ratio (SNR) at every node communication, probability MCS, and percentage coverage of drone trajectory. MCS probability for 64 QAM become increased with selection combining method. The percentages coverage of drone trajectory was obtained 77.2% of the first BS, 66.8% of the second BS, and 87.2% with SC method.The communication network for cellular network keep development. This research analyzed about cellular network was used drone network. The mobile drone used frequency at 10 GHz for communication. The mobile drone moved around buildings. Buildings were used high variation. Base Station placed around building. This research was using macro diversity Base Station, variation building, variation modulation, and variation height of drone trajectory. Macro diversity mechanism used for that two Base Station. Selection Combining (SC) method was used for that macro diversity mechanism. The modulation communication based from Adaptive Modulation and Coding (AMC). Adaptive Modulation and Coding (AMC) was used Modulation and coding scheme (MCS). Modulation was used QPSK, 16 QAM, and 64 QAM. As the result described signal to noise ratio (SNR) at every node communication, probability MCS, and percentage coverage of drone trajectory. MCS probability for 64 QAM become increased with selection combining method. The percentages coverage of drone trajectory was obtained 77.2% of the first BS, 66.8% of the second BS, and 87.2% with SC method

    Integrated Access and Backhaul in Cell-free Massive MIMO Systems

    Get PDF
    One of the major challenges with cell-free (CF) massive multiple-input multiple-output (MIMO) networks is providing backhaul links for a large number of distributed access points (APs). In general, providing fiber optics backhaul for these APs is not cost-effective and also reduces network scalability. Wireless backhauling can be a promising solution that can be integrated with wireless access links to increase spectrum efficiency. In this paper, the application of integrated access and backhaul (IAB) technique in millimeter-wave (mmWave) CF massive MIMO systems is investigated. The access and backhaul links share a frequency spectrum in the mmWave bands, and in both, hybrid beamforming techniques are adopted for signal transmission. The bandwidth allocation (division) parameter between the two link types as well as the beamforming matrices are optimized to maximize the end-to-end data-rate. This leads to a non-convex optimization problem for which an efficient solution method is proposed. The simulation results show the effectiveness of the IAB technique and our proposed scheme in CF massive MIMO systems. These simulations also compare the proposed hybrid beamforming method with a fully digital solution in terms of the number of radio frequency (RF) chains and the volume of backhaul traffic. Finally, the effect of increasing the number of APs on the users data rates in terms of wireless access and backhaul links constraints is also examined

    Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks-with a focus on Propagation Models

    Get PDF
    This paper provides an overview of the features of fifth generation (5G) wireless communication systems now being developed for use in the millimeter wave (mmWave) frequency bands. Early results and key concepts of 5G networks are presented, and the channel modeling efforts of many international groups for both licensed and unlicensed applications are described here. Propagation parameters and channel models for understanding mmWave propagation, such as line-of-sight (LOS) probabilities, large-scale path loss, and building penetration loss, as modeled by various standardization bodies, are compared over the 0.5-100 GHz range

    Implementación de los modelos de propagación de gran escala entre 0.5 GHz y 100 GHz de acuerdo a las especificaciones del 3GPP para aplicaciones móviles 5G

    Get PDF
    La presente tesis tiene como finalidad implementar en una aplicación web, los modelos de pérdidas en el trayecto de propagación de gran escala, de acuerdo a las especificaciones del 3GPP TR 38.901, para frecuencias de redes 5G. Para ello fue necesario analizar el modelo presentado en el TR 38.901. Se hace una explicación del modelo de canal y los modelos de canal más importantes para redes 5G. Se mencionan los escenarios que se consideran en los modelos, así como los parámetros necesarios. Posteriormente se profundiza el análisis del modelo propuesto en el TR 38.901, específicamente en lo relacionado a la pérdida en el trayecto y la probabilidad de línea de vista para cada escenario planteado en el reporte. Para el cálculo de las pérdidas en el trayecto, se diseña una aplicación web, para lo cual se elige las herramientas necesarias para programar la aplicación, así como para implementarla en un servidor y ponerla a disposición de los potenciales usuarios. Los parámetros necesarios para el cálculo, se especifican en el TR 38.901 según el escenario seleccionado. La aplicación permite elegir entre los cuatro escenarios contemplados en el reporte, y solicita los parámetros correspondientes al escenario. Como resultado devuelve el valor de pérdidas en el trayecto, y a la vez una tabulación y una gráfica que explican el comportamiento del modelo de pérdidas para un rango especificado por el usuario. Finalmente se hacen las pruebas a la aplicación, las validaciones y comparaciones con el modelo del TR 38.901 implementado en MATLAB, así como con el modelo del NYU y su simulador NYUSIM.Tesi
    corecore