821 research outputs found

    Polar Coding for the Large Hadron Collider: Challenges in Code Concatenation

    Full text link
    In this work, we present a concatenated repetition-polar coding scheme that is aimed at applications requiring highly unbalanced unequal bit-error protection, such as the Beam Interlock System of the Large Hadron Collider at CERN. Even though this concatenation scheme is simple, it reveals significant challenges that may be encountered when designing a concatenated scheme that uses a polar code as an inner code, such as error correlation and unusual decision log-likelihood ratio distributions. We explain and analyze these challenges and we propose two ways to overcome them.Comment: Presented at the 51st Asilomar Conference on Signals, Systems, and Computers, November 201

    Distributed Turbo Product Coding Techniques Over Cooperative Communication Systems

    Get PDF
    In this dissertation, we propose a coded cooperative communications framework based on Distributed Turbo Product Code (DTPC). The system uses linear block Extended Bose-Chaudhuri-Hochquenghem (EBCH) codes as component codes. The source broadcasts the EBCH coded frames to the destination and nearby relays. Each relay constructs a product code by arranging the corrected bit sequences in rows and re-encoding them vertically using EBCH as component codes to obtain an Incremental Redundancy (IR) for source\u27s data. Under this frame, we have investigated a number of interesting and important issues. First, to obtain, independent vertical parities from each relay in the same code space, we propose circular interleaving of the decoded EBCH rows before reencoding vertically. We propose and derive a novel soft information relay for the DTPC over cooperative network based on EBCH component codes. The relay generates Log-Likelihood Ratio (LLR) values for the decoded rows are used to construct a product code by re-encoding the matrix along the columns using a novel soft block encoding technique to obtain soft parity bits with different reliabilities that can be used as soft IR for source\u27s data which is forwarded to the destination. To minimize the overall decoding errors, we propose a power allocation method for the distributed encoded system when the channel attenuations for the direct and relay channels are known. We compare the performance of our proposed power allocation method with the fixed power assignments for DTPC system. We also develop a power optimization algorithm to check the validity of our proposed power allocation algorithm. Results for the power allocation and the power optimization prove on the potency of our proposed power allocation criterion and show the maximum possible attainable performance from the DTPC cooperative system. Finally, we propose new joint distributed Space-Time Block Code (STBC)-DTPC by generating the vertical parity on the relay and transmitting it to the destination using STBC on the source and relay. We tested our proposed system in a fast fading environment on the three channels connecting the three nodes in the cooperative network

    Space-time coding techniques with bit-interleaved coded modulations for MIMO block-fading channels

    Full text link
    The space-time bit-interleaved coded modulation (ST-BICM) is an efficient technique to obtain high diversity and coding gain on a block-fading MIMO channel. Its maximum-likelihood (ML) performance is computed under ideal interleaving conditions, which enables a global optimization taking into account channel coding. Thanks to a diversity upperbound derived from the Singleton bound, an appropriate choice of the time dimension of the space-time coding is possible, which maximizes diversity while minimizing complexity. Based on the analysis, an optimized interleaver and a set of linear precoders, called dispersive nucleo algebraic (DNA) precoders are proposed. The proposed precoders have good performance with respect to the state of the art and exist for any number of transmit antennas and any time dimension. With turbo codes, they exhibit a frame error rate which does not increase with frame length.Comment: Submitted to IEEE Trans. on Information Theory, Submission: January 2006 - First review: June 200

    Unified turbo/LDPC code decoder architecture for deep-space communications

    Get PDF
    Deep-space communications are characterized by extremely critical conditions; current standards foresee the usage of both turbo and low-density-parity-check (LDPC) codes to ensure recovery from received errors, but each of them displays consistent drawbacks. Code concatenation is widely used in all kinds of communication to boost the error correction capabilities of single codes; serial concatenation of turbo and LDPC codes has been recently proven effective enough for deep space communications, being able to overcome the shortcomings of both code types. This work extends the performance analysis of this scheme and proposes a novel hardware decoder architecture for concatenated turbo and LDPC codes based on the same decoding algorithm. This choice leads to a high degree of datapath and memory sharing; postlayout implementation results obtained with complementary metal-oxide semiconductor (CMOS) 90 nm technology show small area occupation (0.98 mm 2 ) and very low power consumption (2.1 mW)

    Space-Time Codes Concatenated with Turbo Codes over Fading Channels

    Get PDF
    The uses of space-time code (STC) and iterative processing have enabled robust communications over fading channels at previously unachievable signal-to-noise ratios. Maintaining desired transmission rate while improving the diversity from STC is challenging, and the performance of the STC suļ¬€ers considerably due to lack of channel state information (CSI). This dissertation research addresses issues of considerable importance in the design of STC with emphasis on eļ¬ƒcient concatenation of channel coding and STC with theoretical bound derivation of the proposed schemes, iterative space-time trellis coding (STTC), and diļ¬€erential space-time codes. First, we concatenate space-time block code (STBC) with turbo code for improving diversity gain as well as coding gain. Proper soft-information sharing is indispensable to the iterative decoding process. We derive the required soft outputs from STBC decoders for passing to outer turbo code. Traditionally, the performance of STBC schemes has been evaluated under perfect channel estimation. For fast time-varying channel, obtaining the CSI is tedious if not impossible. We introduce a scheme of calculating the CSI at the receiver from the received signal without the explicit channel estimation. The encoder of STTC, which is generally decoded using Viterbi like algorithm, is based on a trellis structure. This trellis structure provides an inherent advantage for the STTC scheme that an iterative decoding is feasible with the minimal addition computational complexity. An iteratively decoded space-time trellis coding (ISTTC) is proposed in this dissertation, where the STTC schemes are used as constituent codes of turbo code. Then, the performance upper bound of the proposed ISTTC is derived. Finally, for implementing STBC without channel estimation and maintaining trans- mission rate, we concatenate diļ¬€erential space-time block codes (DSTBC) with ISTTC. The serial concatenation of DSTBC or STBC with ISTTC oļ¬€ers improving performance, even without an outer channel code. These schemes reduce the system complexity com- pared to the standalone ISTTC and increase the transmission rate under the same SNR condition. Detailed design procedures of these proposed schemes are analyzed

    Performance Improvement of Space Missions Using Convolutional Codes by CRC-Aided List Viterbi Algorithms

    Get PDF
    Recently, CRC-aided list decoding of convolutional codes has gained attention thanks to its remarkable performance in the short blocklength regime. This paper studies the convolutional and CRC codes of the Consultative Committee for Space Data System Telemetry recommendation used in space missions by all international space agencies. The distance spectrum of the concatenated CRC-convolutional code and an upper bound on its frame error rate are derived, showing the availability of a 3 dB coding gain when compared to the maximum likelihood decoding of the convolutional code alone. The analytic bounds are then compared with Monte Carlo simulations for frame error rates achieved by list Viterbi decoding of the concatenated codes, for various list sizes. A remarkable outcome is the possibility of approaching the 3 dB coding gain with nearly the same decoding complexity of the plain Viterbi decoding of the inner convolutional code, at the expense of slightly increasing the undetected frame error rates at medium-high signal-to-noise ratios. Comparisons with CCSDS turbo codes and low-density parity check codes highlight the effectiveness of the proposed solution for onboard utilization on small satellites and cubesats, due to the reduced encoder complexity and excellent error rate performance
    • ā€¦
    corecore