2 research outputs found

    Single image super resolution for spatial enhancement of hyperspectral remote sensing imagery

    Get PDF
    Hyperspectral Imaging (HSI) has emerged as a powerful tool for capturing detailed spectral information across various applications, such as remote sensing, medical imaging, and material identification. However, the limited spatial resolution of acquired HSI data poses a challenge due to hardware and acquisition constraints. Enhancing the spatial resolution of HSI is crucial for improving image processing tasks, such as object detection and classification. This research focuses on utilizing Single Image Super Resolution (SISR) techniques to enhance HSI, addressing four key challenges: the efficiency of 3D Deep Convolutional Neural Networks (3D-DCNNs) in HSI enhancement, minimizing spectral distortions, tackling data scarcity, and improving state-of-the-art performance. The thesis establishes a solid theoretical foundation and conducts an in-depth literature review to identify trends, gaps, and future directions in the field of HSI enhancement. Four chapters present novel research targeting each of the aforementioned challenges. All experiments are performed using publicly available datasets, and the results are evaluated both qualitatively and quantitatively using various commonly used metrics. The findings of this research contribute to the development of a novel 3D-CNN architecture known as 3D Super Resolution CNN 333 (3D-SRCNN333). This architecture demonstrates the capability to enhance HSI with minimal spectral distortions while maintaining acceptable computational cost and training time. Furthermore, a Bayesian-optimized hybrid spectral spatial loss function is devised to improve the spatial quality and minimize spectral distortions, combining the best characteristics of both domains. Addressing the challenge of data scarcity, this thesis conducts a thorough study on Data Augmentation techniques and their impact on the spectral signature of HSI. A new Data Augmentation technique called CutMixBlur is proposed, and various combinations of Data Augmentation techniques are evaluated to address the data scarcity challenge, leading to notable enhancements in performance. Lastly, the 3D-SRCNN333 architecture is extended to the frequency domain and wavelet domain to explore their advantages over the spatial domain. The experiments reveal promising results with the 3D Complex Residual SRCNN (3D-CRSRCNN), surpassing the performance of 3D-SRCNN333. The findings presented in this thesis have been published in reputable conferences and journals, indicating their contribution to the field of HSI enhancement. Overall, this thesis provides valuable insights into the field of HSI-SISR, offering a thorough understanding of the advancements, challenges, and potential applications. The developed algorithms and methodologies contribute to the broader goal of improving the spatial resolution and spectral fidelity of HSI, paving the way for further advancements in scientific research and practical implementations.Hyperspectral Imaging (HSI) has emerged as a powerful tool for capturing detailed spectral information across various applications, such as remote sensing, medical imaging, and material identification. However, the limited spatial resolution of acquired HSI data poses a challenge due to hardware and acquisition constraints. Enhancing the spatial resolution of HSI is crucial for improving image processing tasks, such as object detection and classification. This research focuses on utilizing Single Image Super Resolution (SISR) techniques to enhance HSI, addressing four key challenges: the efficiency of 3D Deep Convolutional Neural Networks (3D-DCNNs) in HSI enhancement, minimizing spectral distortions, tackling data scarcity, and improving state-of-the-art performance. The thesis establishes a solid theoretical foundation and conducts an in-depth literature review to identify trends, gaps, and future directions in the field of HSI enhancement. Four chapters present novel research targeting each of the aforementioned challenges. All experiments are performed using publicly available datasets, and the results are evaluated both qualitatively and quantitatively using various commonly used metrics. The findings of this research contribute to the development of a novel 3D-CNN architecture known as 3D Super Resolution CNN 333 (3D-SRCNN333). This architecture demonstrates the capability to enhance HSI with minimal spectral distortions while maintaining acceptable computational cost and training time. Furthermore, a Bayesian-optimized hybrid spectral spatial loss function is devised to improve the spatial quality and minimize spectral distortions, combining the best characteristics of both domains. Addressing the challenge of data scarcity, this thesis conducts a thorough study on Data Augmentation techniques and their impact on the spectral signature of HSI. A new Data Augmentation technique called CutMixBlur is proposed, and various combinations of Data Augmentation techniques are evaluated to address the data scarcity challenge, leading to notable enhancements in performance. Lastly, the 3D-SRCNN333 architecture is extended to the frequency domain and wavelet domain to explore their advantages over the spatial domain. The experiments reveal promising results with the 3D Complex Residual SRCNN (3D-CRSRCNN), surpassing the performance of 3D-SRCNN333. The findings presented in this thesis have been published in reputable conferences and journals, indicating their contribution to the field of HSI enhancement. Overall, this thesis provides valuable insights into the field of HSI-SISR, offering a thorough understanding of the advancements, challenges, and potential applications. The developed algorithms and methodologies contribute to the broader goal of improving the spatial resolution and spectral fidelity of HSI, paving the way for further advancements in scientific research and practical implementations

    Caracterizaci贸n fisicoqu铆mica de cuerpos de aguas superficiales por medio de Sensores Remotos: Caso de estudio Presa J. A. Alzate, M茅xico

    Get PDF
    Tesis de maestr铆aEl monitoreo de la calidad del agua a trav茅s de los sensores remotos permite la estimaci贸n de Par谩metros de Calidad del Agua (PCA) como los s贸lidos suspendidos totales (SST), nitr贸geno total (NT), la demanda qu铆mica de ox铆geno (DQO), el f贸sforo total (PT) entre otros. La estimaci贸n de estos PCA se realiza generalmente a trav茅s de procesos de laboratorio, los cuales pueden requerir una cantidad considerable de tiempo y costos. El an谩lisis del agua mediante sensores remotos considera la correlaci贸n entre los datos de calidad del agua y la reflectancia de los cuerpos de agua superficiales. Este estudio propone el uso de las bandas de la imagen Landsat 8 OLI para estimar cuatro PCA y validarlos mediante muestras de campos. La ventaja de estimar los PCA con sensores remotos radica en la precisi贸n de sus resultados, en menores tiempo y costos a diferencias de los m茅todos tradicionales. Para obtener las funciones de PCA basadas en la reflectancia del agua, se propusieron regresiones multivariadas lineales, exponenciales y polinomiales. Dicho estudio es aplicado a La Presa J. A. Alzate. M茅xico como caso de estudio debido a las concentraciones de contaminantes transportados por el agua proveniente de la Zona Metropolitana de Toluca (ZMT). El an谩lisis consider贸 14 muestras de campo, 7 de las cuales se recolectaron antes de la temporada de lluvias (19/05/2018) y 7 despu茅s de la misma (16/10/2018). La metodolog铆a de este estudio se divide en tres fases: pre-procesamiento (l铆mite del 谩rea de estudio, calibraci贸n y correcci贸n atmosf茅rica), procesamiento (tama帽o de la muestra, regresi贸n m煤ltiple y validaci贸n) y post-procesamiento (interpolaci贸n). En el pre-procesamiento el modelo MODTRAN 4 fue utilizado para la correcci贸n atmosf茅rica del 谩rea de estudio para identificar el modelo de atm贸sfera ad hoc a esta zona y, por lo tanto, obtener la reflectancia que m谩s se ajuste a la realidad de la superficie analizada. El procesamiento requiri贸 de muestras de campo en diferentes fechas (temporada antes y despu茅s de lluvias) para dise帽ar los modelos de regresi贸n m煤ltiple, adem谩s de lo anterior tambi茅n se analizaron supuestos de validaci贸n para los valores de entrada y la evaluaci贸n del modelo se bas贸 en el 虆2, p-value, validaci贸n cruzada, estad铆stico F, estad铆stico t y coeficiente de eficiencia de Nash-Sutcliffe (E). Los resultados obtenidos en el presente estudio indican que el NT y la DQO pueden ser estimados de manera confiable con el modelo de regresi贸n exponencial m煤ltiple, para los SST y PT por medio de la regresi贸n polin贸mica m煤ltiple. El modelo que presenta la menor capacidad explicativa de los datos corresponde al modelo lineal para los SST ya que obtiene un 虆2=0.6125, a pesar de las transformaciones a la variable dependiente con la finalidad de linealizarlo. El post-procesamiento arroj贸 que la zona norte presenta altos contenidos de polutos, los cuales inclusive sobrepasan los l铆mites permisibles de las normas mexicanas para la DQO, PT y SST. 脷nicamente el NT se encuentra dentro de los l铆mites permisibles para aguas de uso de riego agr铆cola tanto para la temporada antes de lluvias, como para despu茅s de lluvias. A nivel mensual el comportamiento de la DQO, NT y PT tienden a presentar altas concentraciones en los meses antes de secas. Para los SST a nivel mensual presenta disparidad en las concentraciones de este PCA.CONACy
    corecore