74,171 research outputs found
Gastric Helicobacter infection induces iron deficiency in the INS-GAS mouse
There is increasing evidence from clinical and population studies for a role of H. pylori infection in the aetiology of iron deficiency. Rodent models of Helicobacter infection are helpful for investigating any causal links and mechanisms of iron deficiency in the host. The aim of this study was to investigate the effects of gastric Helicobacter infection on iron deficiency and host iron metabolism/transport gene expression in hypergastrinemic INS-GAS mice. INS-GAS mice were infected with Helicobacter felis for 3, 6 and 9 months. At post mortem, blood was taken for assessment of iron status and gastric mucosa for pathology, immunohistology and analysis of gene expression. Chronic Helicobacter infection of INS- GAS mice resulted in decreased serum iron, transferrin saturation and hypoferritinemia and increased Total iron binding capacity (TIBC). Decreased serum iron concentrations were associated with a concomitant reduction in the number of parietal cells, strengthening the association between hypochlorhydria and gastric Helicobacter-induced iron deficiency. Infection with H. felis for nine months was associated with decreased gastric expression of iron metabolism regulators hepcidin, Bmp4 and Bmp6 but increased expression of Ferroportin 1, the iron efflux protein, iron absorption genes such as Divalent metal transporter 1, Transferrin receptor 1 and also Lcn2 a siderophore-binding protein. The INS-GAS mouse is therefore a useful model for studying Helicobacter-induced iron deficiency. Furthermore, the marked changes in expression of gastric iron transporters following Helicobacter infection may be relevant to the more rapid development of carcinogenesis in the Helicobacter infected INS-GAS model
Ironing out the details: Untangling dietary iron and genetic background in diabetes
The search for genetic risk factors in type-II diabetes has been hindered by a failure to consider dietary variables. Dietary nutrients impact metabolic disease risk and severity and are essential to maintaining metabolic health. Genetic variation between individuals confers differences in metabolism, which directly impacts response to diet. Most studies attempting to identify genetic risk factors in disease fail to incorporate dietary components, and thus are ill-equipped to capture the breadth of the genome’s impact on metabolism. Understanding how genetic background interacts with nutrients holds the key to predicting and preventing metabolic diseases through the implementation of personalized nutrition. Dysregulation of iron homeostasis is associated with type-II diabetes, but the link between dietary iron and metabolic dysfunction is poorly defined. High iron burden in adipose tissue induces insulin resistance, but the mechanisms underlying adipose iron accumulation remain unknown. Hepcidin controls dietary iron absorption and distribution in metabolic tissues, but it is unknown whether genetic variation influencing hepcidin expression modifies susceptibility to dietary iron-induced insulin resistance. This review highlights discoveries concerning the axis of iron homeostasis and adipose function and suggests that genetic variation underlying dietary iron metabolism is an understudied component of metabolic disease
The electrophoresis of transferrins in urea/polyacrylamide gels
The denaturation of transferrin by urea has been studied by (a) electrophoresis in
polyacrylamide gels incorporating a urea gradient, (b) measurements of the loss in
iron-binding capacity and (c) u.v. difference spectrometry. In human serum transferrin
and hen ovotransferrin the N-terminal and C-terminal domains of the iron-free protein
were found to denature at different urea concentrations
Maternal zinc intakes and homeostatic adjustments during pregnancy and lactation.
Zinc plays critical roles during embryogenesis, fetal growth, and milk secretion, which increase the zinc need for pregnancy and lactation. Increased needs can be met by increasing the dietary zinc intake, along with making homeostatic adjustments in zinc utilization. Potential homeostatic adjustments include changes in circulating zinc, increased zinc absorption, decreased zinc losses, and changes in whole body zinc kinetics. Although severe zinc deficiency during pregnancy has devastating effects, systematic reviews and meta-analysis of the effect of maternal zinc supplementation on pregnancy outcomes have consistently shown a limited benefit. We hypothesize, therefore, that zinc homeostatic adjustments during pregnancy and lactation improve zinc utilization sufficiently to provide the increased zinc needs in these stages and, therefore, mitigate immediate detrimental effects due to a low zinc intake. The specific questions addressed are the following: How is zinc utilization altered during pregnancy and lactation? Are those homeostatic adjustments influenced by maternal zinc status, dietary zinc, or zinc supplementation? These questions are addressed by critically reviewing results from published human studies on zinc homeostasis during pregnancy and lactation carried out in different populations worldwide
Lactoferrin. A natural glycoprotein involved in iron and inflammatory homeostasis
Human lactoferrin (hLf), an iron-binding multifunctional cationic glycoprotein secreted by exocrine glands and by neutrophils, is a key element of host defenses. HLf and bovine Lf (bLf), possessing high sequence homology and identical functions, inhibit bacterial growth and biofilm dependently from iron binding ability while, independently, bacterial adhesion to and the entry into cells. In infected/inflamed host cells, bLf exerts an anti-inflammatory activity against interleukin-6 (IL-6), thus up-regulating ferroportin (Fpn) and transferrin receptor 1 (TfR1) and down-regulating ferritin (Ftn), pivotal actors of iron and inflammatory homeostasis (IIH). Consequently, bLf inhibits intracellular iron overload, an unsafe condition enhancing in vivo susceptibility to infections, as well as anemia of inflammation (AI), re-establishing IIH. In pregnant women, affected by AI, bLf oral administration decreases IL-6 and increases hematological parameters. This surprising effect is unrelated to iron supplementation by bLf (80 µg instead of 1-2 mg/day), but to its role on IIH. AI is unrelated to the lack of iron, but to iron delocalization: cellular/tissue overload and blood deficiency. BLf cures AI by restoring iron from cells to blood through Fpn up-expression. Indeed, anti-inflammatory activity of oral and intravaginal bLf prevents preterm delivery. Promising bLf treatments can prevent/cure transitory inflammation/anemia/oral pathologies in athletes
Chronic hyperplastic anemia as an independent risk factor for atherosclerotic lesions: a lesson from thalassemia intermedia
Introduction. Cardiovascular involvement represents a well-known complication and the primary cause of mortality, both in transfusion-dependent beta thalassemia major (β-TM) and in transfusion-independent beta thalassemia intermedia (β-TI). In β-TM, heart iron overload is considered the main cause of this complication. This is likely due to poor adherence to iron-chelating therapy, resulting in the inability of the body to efficiently remove iron excess derived from transfused red blood cell breakdown. Different clinical pictures may instead be evoked in cardiovascular involvement occurring in β-TI; however, until now, no factor has emerged as the major one responsible for these complications. 
Design and Methods. In the present study, iron status, and lipid profiles in serum, as well as lipid content in peripheral blood mononuclear cells (PBMCs) were evaluated in 70 adult β-TM and in 22 adult β-TI patients. Ninety-two age-matched blood donors, free from any form of thalassemia, were utilized as controls. The mRNA levels of genes involved in the regulation of iron metabolism, such as interleukine 1 alfa (IL1α), tumor necrosis factor alfa (TNFα), as well as those involved in cholesterol homeostasis, such as acetyl-coenzymeA: cholesterol acyltransferase (ACAT-1), neutral cholesterol ester hydrolase (nCEH), and ATP binding cassette-A (ABCA1), were also evaluated in PBMCs from the above subjects.
Results. In β-TI patients, serum iron, transferrin saturation and erythropoietin levels were higher, while transferrin and hepcidin were lower, compared to both β-TM and controls. Hepcidin and ILα mRNA levels were found to be reduced in β-TI-PBMCs, while those of TNFα were increased. A reduction in total and high density lipoprotein cholesterol (TC and HDL-C) in serum, and an accumulation of neutral lipids (NL), coupled with increased mRNA levels of ACAT-1 and decreased nCEH in PBMCs were also observed in β-TI. 
Conclusions. Since most of the parameters found to be altered in β-TI patients have a key role in the initiation and progression of atherosclerosis, we suggest that cardiovascular complications in these patients may be, at least partially, dependent on the occurrence of premature atherosclerotic lesions. 

The trypanosomal transferrin receptor of trypanosoma brucei : a review
Iron is an essential element for life. Its uptake and utility requires a careful balancing with its toxic capacity, with mammals evolving a safe and bio-viable means of its transport and storage. This transport and storage is also utilized as part of the iron-sequestration arsenal employed by the mammalian hosts’ ‘nutritional immunity’ against parasites. Interestingly, a key element of iron transport, i.e., serum transferrin (Tf), is an essential growth factor for parasitic haemo-protozoans of the genus Trypanosoma. These are major mammalian parasites causing the diseases human African trypanosomosis (HAT) and animal trypanosomosis (AT). Using components of their well-characterized immune evasion system, bloodstream Trypanosoma brucei parasites adapt and scavenge for the mammalian host serum transferrin within their broad host range. The expression site associated genes (ESAG6 and 7) are utilized to construct a heterodimeric serum Tf binding complex which, within its niche in the flagellar pocket, and coupled to the trypanosomes’ fast endocytic rate, allows receptor-mediated acquisition of essential iron from their environment. This review summarizes current knowledge of the trypanosomal transferrin receptor (TfR), with emphasis on the structure and function of the receptor, both in physiological conditions as well as in conditions where the iron supply to parasites is being limited. Potential applications using current knowledge of the parasite receptor are also briefly discussed, primarily focused on potential therapeutic interventions
Recommended from our members
Hepatic heparan sulfate is a master regulator of hepcidin expression and iron homeostasis in human hepatocytes and mice.
Hepcidin is a liver-derived peptide hormone that controls systemic iron homeostasis. Its expression is regulated by the bone morphogenetic protein 6 (BMP6)/SMAD1/5/8 pathway and by the proinflammatory cytokine interleukin 6 (IL6). Proteoglycans that function as receptors of these signaling proteins in the liver are commonly decorated by heparan sulfate, but the potential role of hepatic heparan sulfate in hepcidin expression and iron homeostasis is unclear. Here, we show that modulation of hepatic heparan sulfate significantly alters hepcidin expression and iron metabolism both in vitro and in vivo Specifically, enzymatic removal of heparan sulfate from primary human hepatocytes, CRISPR/Cas9 manipulation of heparan sulfate biosynthesis in human hepatoma cells, or pharmacological manipulation of heparan sulfate-protein interactions using sodium chlorate or surfen dramatically reduced baseline and BMP6/SMAD1/5/8-dependent hepcidin expression. Moreover inactivation of the heparan sulfate biosynthetic gene N-deacetylase and N-sulfotransferase 1 (Ndst1) in murine hepatocytes (Ndst1 f/f AlbCre +) reduced hepatic hepcidin expression and caused a redistribution of systemic iron, leading to iron accumulation in the liver and serum of mice. Manipulation of heparan sulfate had a similar effect on IL6-dependent hepcidin expression in vitro and suppressed IL6-mediated iron redistribution induced by lipopolysaccharide in vivo These results provide compelling evidence that hepatocyte heparan sulfate plays a key role in regulating hepcidin expression and iron homeostasis in mice and in human hepatocytes
Hepcidin and iron homeostasis during pregnancy.
Hepcidin is the master regulator of systemic iron bioavailability in humans. This review examines primary research articles that assessed hepcidin during pregnancy and postpartum and report its relationship to maternal and infant iron status and birth outcomes; areas for future research are also discussed. A systematic search of the databases Medline and Cumulative Index to Nursing and Allied Health returned 16 primary research articles including 10 human and six animal studies. Collectively, the results indicate that hepcidin is lower during pregnancy than in a non-pregnant state, presumably to ensure greater iron bioavailability to the mother and fetus. Pregnant women with undetectable serum hepcidin transferred a greater quantity of maternally ingested iron to their fetus compared to women with detectable hepcidin, indicating that maternal hepcidin in part determines the iron bioavailability to the fetus. However, inflammatory states, including preeclampsia, malaria infection, and obesity were associated with higher hepcidin during pregnancy compared to healthy controls, suggesting that maternal and fetal iron bioavailability could be compromised in such conditions. Future studies should examine the relative contribution of maternal versus fetal hepcidin to the control of placental iron transfer as well as optimizing maternal and fetal iron bioavailability in pregnancies complicated by inflammation
Plasma total antioxidant capacity and peroxidation biomarkers in psoriasis
Systemic biomarkers of oxidative stress can be relevant for assessment of psoriasis severity, for prediction of the
outcome of therapy and of the development of comorbidities. In this review we aimed to evaluate the relationship
between plasma total antioxidant capacity (TAC) and peroxidation biomarkers, as well as their association with
dyslipidemia and systemic inflammation in psoriasis. The review of 59 case–control comparisons (from 41 studies)
and 17 interventions (from 13 studies) suggests that peroxidation markers are more sensitive than TAC in the
evaluation of oxidative stress in psoriasis. Although few studies investigated the effect of treatment on oxidative
stress, it seems that biological drugs could be the better choice in the treatment of psoriasis. However, considering
the limitations of TAC and plasma peroxidation markers, this review suggests that new methods should be
developed in order to evaluate systemic oxidative stress in psoriasis
- …
