4,493 research outputs found

    A practical degradation based method to predict long-term moisture incursion and colour change in high power LEDs

    Get PDF
    The effect of relative humidity on LEDs and how the moisture incursion is associated to the color shift is studied. This paper proposes a different approach to describe the lumen degradation of LEDs due to the long-term effects of humidity. Using the lumen degradation data of different types of LEDs under varying conditions of relative humidity, a humidity based degradation model (HBDM) is developed. A practical estimation method from the degradation behaviour is proposed to quantitatively gauge the effect of moisture incursion by means of a humidity index. This index demonstrates a high correlation with the color shift indicated by the LED's yellow to blue output intensity ratio. Physical analyses of the LEDs provide a qualitative validation of the model, which provides good accuracy with longer periods of moisture exposure. The results demonstrate that the HBDM is an effective indicator to predict the extent of the long-term impact of humidity and associated relative color shift

    III-nitride nanowire light-emitting diodes: design and characterization

    Get PDF
    III-nitride semiconductors have been intensively studied for optoelectronic devices, due to the superb advantages offered by this materials system. The direct energy bandgap III-nitride semiconductors can absorb or emit light efficiently over a broad spectrum, ranging from 0.65 eV (InN) to 6.4 eV (AlN), which encompasses from deep ultraviolet to near infrared spectrum. However, due to the lack of native substrates, conventional III-nitride planar heterostructures generally exhibit very high dislocation densities that severely limit the device performance and reliability. On the other hand, nanowire heterostructures can be grown on lattice mismatched substrates with drastically reduced dislocation densities, due to highly effective lateral stress relaxation. Nanowire light-emitting diodes (LEDs) with emission in the ultraviolet to visible wavelength range have recently been studied for applications in solid-state lighting, flat-panel displays, and solar-blind detectors. In this thesis, investigation of the systematic process flow of design and epitaxial growth of group III-nitride nanoscale heterostructures was done. Moreover, demonstration of phosphor-free nanowire white LEDs using InGaN/AlGaN nanowire heterostructures grown directly on Si(111) substrates by molecular beam epitaxy was made. Full-color emission across nearly the entire visible wavelength range was realized by controlling the In composition in the InGaN active region. Strong white-light emission was recorded for the unpackaged nanowire LEDs with an unprecedentedly high color rendering index of 98. Moreover, LEDs with the operating wavelengths in the ultraviolet (UV) spectra, with emission wavelength in the range of 280-320 nm (UV-B) or shorter wavelength hold tremendous promise for applications in phototherapy, skin treatments, high speed dissociation and high density optical recording. Current planar AlGaN based UV-B LEDs have relatively low quantum efficiency due to their high dislocation density resulted from the large lattice mismatch between the AlGaN and suitable substrates. In this study, associated with the achievement of visible LEDs, the development of high brightness AlGaN/GaN nanowire UV-LEDs via careful design and device fabrication was shown. Strong photoluminescence spectra were recorded from these UV-B LEDs. The emission peak can be tunable from 290 nm to 320 nm by varying the Al content in AlGaN active region which can be done by optimizing the growth condition including Al/Ga flux ratio and also the growth temperature. Such visible to UV-B nanowire LEDs are ideally suited for future smart lighting, full-color display, phototherapy and skin treatments applications

    Epitaxial growth of iii-nitride nanostructures and their optoelectronic applications

    Get PDF
    Light-emitting diodes (LEDs) using III-nitride nanowire heterostructures have been intensively studied as promising candidates for future phosphor-free solid-state lighting and full-color displays. Compared to conventional GaN-based planar LEDs, III-nitride nanowire LEDs exhibit numerous advantages including greatly reduced dislocation densities, polarization fields, and quantum-confined Stark effect due to the effective lateral stress relaxation, promising high efficiency full-color LEDs. Beside these advantages, however, several factors have been identified as the limiting factors for further enhancing the nanowire LED quantum efficiency and light output power. Some of the most probable causes have been identified as due to the lack of carrier confinement in the active region, non-uniform carrier distribution, and electron overflow. Moreover, the presence of large surface states and defects contribute significantly to the carrier loss in nanowire LEDs. In this dissertation, a unique core-shell nanowire heterostructure is reported, that could overcome some of the aforementioned-problems of nanowire LEDs. The device performance of such core-shell nanowire LEDs is significantly enhanced by employing several effective approaches. For instance, electron overflow and surface states/defects issues can be significantly improved by the usage of electron blocking layer and by passivating the nanowire surface with either dielectric material / large bandgap energy semiconductors, respectively. Such core-shell nanowire structures exhibit significantly increased carrier lifetime and massively enhanced photoluminescence intensity compared to conventional InGaN/GaN nanowire LEDs. Furthermore, AlGaN based ultraviolet LEDs are studied and demonstrated in this dissertation. The simulation studies using Finite-Difference Time-Domain method (FDTD) substantiate the design modifications such as flip-chip nanowire LED introduced in this work. High performance nanowire LEDs on metal substrates (copper) were fabricated via substrate-transfer process. These LEDs display higher output power in comparison to typical nanowire LEDs grown on Si substrates. By engineering the device active region, high brightness phosphor-free LEDs on Cu with highly stable white light emission and high color rendering index of \u3e 95 are realized. High performance nickel?zinc oxide (Ni-ZnO) and zinc oxide-graphene (ZnO-G) particles have been fabricated through a modified polyol route at 250?C. Such materials exhibit great potential for dye-sensitized solar cell (DSSC) applications on account of the enhanced short-circuit current density values and improved efficiency that stems from the enhanced absorption and large surface area of the composite. The enhanced absorption of Ni-ZnO composites can be explained by the reduction in grain boundaries of the composite structure as well as to scattering at the grain boundaries. The impregnation of graphene into ZnO structures results in a significant increase in photocurrent consequently due to graphene\u27s unique attributes including high surface area and ultra-high electron mobility. Future research directions will involve the development of such wide-bandgap devices such as solar cells, full color LEDs, phosphor free white-LEDs, UV LEDs and laser diodes for several applications including general lighting, wearable flexible electronics, water purification, as well as high speed LEDs for visible light communications

    Plasmonic control of light emission for enhanced efficiency and beam shaping

    Full text link
    Thesis (Ph.D.)--Boston UniversityInGaN alloys and related quantum structures are of great technological importance for the development of visible light emitting devices, motivated by a wide range of applications, particularly solid-state lighting. The InxGa1-xN material system provides continuous emission tuning from the ultraviolet across the visible spectrum by changing the In content. InGaN/GaN quantum wells (QW) also provide an efficient medium for electroluminescence for use as light emitting diodes. It is well known, however, that increasing the In content degrades the internal quantum efficiency of these devices, particularly in the green region of the spectrum. These limitations must be overcome before efficient all-solid-state lighting can be developed beyond the blue-green region using this material system. Recently, the application of plasmonic excitations supported by metallic nanostructures has emerged as a promising approach to address this issue. In this work, metallic nanoparticles (NPs) and nanostructures that support plasmonic modes are engineered to increase the local density of states of the electromagnetic field that overlaps the QW region. This leads to an enhancement of the spontaneous emission rate of the QW region mediated by direct coupling into the plasmonic modes of the nanostructure. Energy stored in these modes can then scatter efficiently into free-space radiation, thereby enhancing the light output intensity. The first section of this thesis concerns the enhancement of InGaN/GaN QW light emission by utilizing localized surface plasmon resonances (LSPRs) and lattice surface modes of metal NP arrays. This work comprises a detailed study of the effect of geometry variations of Ag NPs on the LSPR wavelength, and the subsequent demonstration of photoluminescence intensity enhancement by Ag NPs in the vicinity of InGaN multiple QWs. The second section of this thesis concerns the far-field control of QW emission utilizing metallic nanostructures that support plasmonic excitations. This includes a study of the dispersion and competing effects of a metallic NP-film system, and the demonstration of beam collimation and unidirectional diffraction utilizing a similar geometry. These results may find novel applications in the emerging field of solid-state smart lighting

    Device Engineering for Internal Quantum Efficiency Enhancement and Efficiency Droop Issue in III-Nitride Light-Emitting Diodes

    Get PDF
    Over the past few decades, III-Nitride semiconductors have found the tremendous impacts in solid state lighting, power electronics, photovoltaics and thermoelectrics. In particular, III-nitride based light-emitting diodes (LEDs) with long lifetime and eco-friendliness are fundamentally redefining the concepts of light generation due to the superior material properties of direct bandgap, efficient light emission and robustness. The industry of LED based solid state lighting is fulfilling the potential of reducing the 20% of the total US energy consumed by lighting to half of this usage. However, several major obstacles are still hindering the further development of LEDs for general illuminations. They include efficiency droop phenomenon at high operating current, low efficiency in green spectrum, and low extraction efficiency due to the large difference in refractive index. The report will present both experimental and theoretical works on III-nitride semiconductor materials and devices for solid state lighting, including 1) novel barrier design for efficiency-droop suppression, 2) novel active region design for radiative efficiency enhancement, and 3) fabrication of ultrahigh density and highly uniform III-nitride based quantum dots (QDs) for high efficiency optoelectronics and photovoltaic cells. In addition to the three main topics, a new topic on the p-type III-nitrides doping sensitivity will be investigated in the latter part of this report.Firstly, the use of large bandgap thin barrier layers surrounding the InGaN QWs in LEDs will be proposed for efficiency droop suppression. The efficiency of LED devices suffers from reduction at high current injection, which is referred as efficiency droop phenomenon. Although the origin is still inconclusive up till now, the carrier leakage issue is widely considered as one of the major reasons. The increased effective barrier heights from the use of a thin (d \u3c 2 nm) lattice-matched AlGaInN barriers are shown to improve current injection efficiency and internal quantum efficiency. The optimization of epitaxial conditions of lattice-matched AlInN material has been carried out by metal-organic chemical vapor deposition (MOCVD) for the fabrication of InGaN QW LEDs with the insertion of AlInN thin barrier. The device characterizations of cathodoluminescence and electroluminescence show the great potential of the InGaN-AlInN design in addressing the efficiency droop issue at high current density. Secondly, the staggered InGaN QW and InGaN-delta-InN QW are investigated for the high efficiency LEDs emitting at green or longer emission spectrum region to provide solutions for greengap challenge. The introduction of energy local minima in QW region by the novel structures of staggered InGaN QWs enables the spatial shift of electron and hole wavefunction towards the center of active region. Therefore, the approach leads to the enhancement of electron-hole wavefunction overlap and thus the radiative recombination rate and optical gain. The analysis of InGaN-delta-InN QW LED with the potential of effectively extending the emission wavelength without sacrificing the radiative recombination rates will also be presented. Thirdly, the sensitivity study of the doping levels of p-type layers in InGaN/GaN MQW LEDs will be discussed for industrial application. Due to the difficulty in activating the acceptor magnesium in III-nitrides, thermal annealing process is employed to increase the hole concentration in p-type semiconductors. The uniform temperature distributions in the annealing chambers will lead to non-uniformity in p-type doping levels. The effect of doping levels on LED device performance will be examined, and the doping sensitivity of light output power and internal quantum efficiency will be investigated in this report. The results will provide guidance for the parameter optimization of the fabrication process for commercial product line to increase the yield.Fourthly, the growths of ultra-high density and highly uniform InGaN QDs on GaN/ sapphire template as an important alternative active region for high-efficiency optoelectronic devices will be discussed. The growths of ultra-high density and highly uniform InGaN QDs by employing selective area epitaxy were realized on nanopatterned GaN template fabricated by diblock copolymer lithography. It results in well-defined QD density in the range of 8x1010 cm-2, which represents the highest QD density reported for nitride-based QDs. In comparison, the InGaN QD density by the prevailing Stranski-Krastanow (S-K) growth mode is around mid 109 cm-2 with non-uniformity in dot sizes and distributions. The availability of highly-uniform and ultra-high density InGaN QDs formed by this approach has significant and transformational impacts on developing high-efficiency light-emitting diodes for solid state lighting, ultra-low threshold current density visible diode lasers, and intermediate-band nitride-based solar cells

    Photonic Quantum Ring Laser of Whispering Cave Mode

    Get PDF

    High-Temperature Optoelectronic Device Characterization and Integration Towards Optical Isolation for High-Density Power Modules

    Get PDF
    Power modules based on wide bandgap (WBG) materials enhance reliability and considerably reduce cooling requirements that lead to a significant reduction in total system cost and weight. Although these innovative properties lead power modules to higher power density, some concerns still need to be addressed to take full advantage of WBG-based modules. For example, the use of bulky transformers as a galvanic isolation system to float the high voltage gate driver limits further size reduction of the high-temperature power modules. Bulky transformers can be replaced by integrating high-temperature optocouplers to scale down power modules further and achieve disrupting performance in terms of thermal management, power efficiency, power density, operating environments, and reliability. However, regular semiconductor optoelectronic materials and devices have significant difficulty functioning in high-temperature environments. Modular integration of optoelectronic devices into high-temperature power modules is restricted due to the significant optical efficiency drop at elevated temperatures. The quantum efficiency and long-term reliability of optoelectronic devices decrease at elevated temperatures. The motivation for this study is to develop optoelectronic devices, specifically optocouplers, that can be integrated into high-density power modules. A detailed study on optoelectronic devices at high temperature enables us to explore the possibility of scaling high-density power modules by integrating high-temperature optoelectronic devices into the power module. The primary goal of this study is to characterize and verify the high-temperature operation of optoelectronic devices, including light-emitting diodes and photodiodes based on WBG materials. The secondary goal is to identify and integrate optoelectronic devices to achieve galvanic isolation in high-density power modules working at elevated temperatures. As part of the study, a high-temperature packaging, based on low temperature co-fired ceramic (LTCC), suitable to accommodate optoelectronic devices, will also be designed and developed
    • …
    corecore