7,333 research outputs found

    Enhancing Biomedical Scientific Reviews Summarization with Graph-based Factual Evidence Extracted from Papers

    Get PDF
    Combining structured knowledge and neural language models to tackle natural language processing tasks is a recent research trend that catalyzes community attention. This integration holds a lot of potential in document summarization, especially in the biomedical domain, where the jargon and the complex facts make the overarching information truly hard to interpret. In this context, graph construction via semantic parsing plays a crucial role in unambiguously capturing the most relevant parts of a document. However, current works are limited to extracting open-domain triples, failing to model real-world n-ary and nested biomedical interactions accurately. To alleviate this issue, we present EASumm, the first framework for biomedical abstractive summarization enhanced by event graph extraction (i.e., graphical representations of medical evidence learned from scientific text), relying on dual text-graph encoders. Extensive evaluations on the CDSR dataset corroborate the importance of explicit event structures, with better or comparable performance than previous state-of-the-art systems. Finally, we offer some hints to guide future research in the field

    Abstract Meaning Representation for Multi-Document Summarization

    Full text link
    Generating an abstract from a collection of documents is a desirable capability for many real-world applications. However, abstractive approaches to multi-document summarization have not been thoroughly investigated. This paper studies the feasibility of using Abstract Meaning Representation (AMR), a semantic representation of natural language grounded in linguistic theory, as a form of content representation. Our approach condenses source documents to a set of summary graphs following the AMR formalism. The summary graphs are then transformed to a set of summary sentences in a surface realization step. The framework is fully data-driven and flexible. Each component can be optimized independently using small-scale, in-domain training data. We perform experiments on benchmark summarization datasets and report promising results. We also describe opportunities and challenges for advancing this line of research.Comment: 13 page

    Portable extraction of partially structured facts from the web

    Get PDF
    A novel fact extraction task is defined to fill a gap between current information retrieval and information extraction technologies. It is shown that it is possible to extract useful partially structured facts about different kinds of entities in a broad domain, i.e. all kinds of places depicted in tourist images. Importantly the approach does not rely on existing linguistic resources (gazetteers, taggers, parsers, etc.) and it ported easily and cheaply between two very different languages (English and Latvian). Previous fact extraction from the web has focused on the extraction of structured data, e.g. (Building-LocatedIn-Town). In contrast we extract richer and more interesting facts, such as a fact explaining why a building was built. Enough structure is maintained to facilitate subsequent processing of the information. For example, this partial structure enables straightforward template-based text generation. We report positive results for the correctness and interest of English and Latvian facts and for the utility of the extracted facts in enhancing image captions
    corecore