103 research outputs found

    Distributed MIMO broadcasting: Reverse compute-and-forward and signal-space alignment

    Full text link
    © 2002-2012 IEEE. We study a downlink distributed MIMO system where a central unit (CU) broadcasts messages to K′ users through K distributed BSS. The CU is connected to the BSS via K independent rate-constrained fronthaul (FH) links. The distributed BSS collectively serve the users through the air. We propose a new network coding based distributed MIMO broadcasting scheme, using reverse compute-and-forward and signal-space alignment. At the CU, a network coding generator matrix is employed for pre network coding of the users' messages. The network coded messages are forwarded to the BSS, where the FH rate-constraint determines the actual number of network-coded messages forwarded to the BSS. At the BSS, linear precoding matrices are designed to create a number of bins, each containing a bunch of spatial streams with aligned signal-spaces. At each user, post physical-layer network coding is employed to compute linear combinations over the NC messages with respect to the bins, which reverses the prenetwork coding and recovers the desired messages. We derive an achievable rate of the proposed scheme based on the existence of NC generator matrix, signal-space alignment precoding matrices, and nested lattice codes. Improved rate and degrees of freedom over existing interference alignment and compress-and-forward schemes are shown. Numerical results demonstrate the performance improvement, e.g., by as much as 70% increase in throughput over benchmark schemes

    A Signal-Space Aligned Network Coding Approach to Distributed MIMO

    Full text link
    © 2016 IEEE. This paper studies an uplink distributed MIMO (DMIMO) system that consists of KK users and K distributed base stations (BSs), where the BSs are connected to a central unit (CU) via independent rate-constrained backhaul (BH) links. We propose a new signal-space aligned network coding scheme. First, a network coding generator matrix is selected subject to certain structural properties. Next, distributed linear precoding is employed by the users to create aligned signal-spaces at the BSs, according to the pattern determined by the network coding generator matrix. For each aligned signal-space at a BS, physical-layer network coding is utilized to compute the corresponding network-coded (NC) messages, where the actual number of NC messages forwarded to the CU is determined by the BH rate-constraint. We derive an achievable rate of the proposed scheme based on the existence of the NC generator matrix and signal-space alignment precoding matrices. For DMIMO with two and three BSs, the achievable rates and degrees of freedom (DoF) are evaluated and shown to outperform existing schemes. For example, for DMIMO with two BSs where each user and BS have N and N antennas, respectively, the proposed scheme achieves a DoF of 2 min N,N-1, if the BH capacity scales like 2 min (N,N-1) log SNR. This leads to greater DoF compared to that utilizes the strategy for interference channel, whose DoF is min (N,N right). Numerical results demonstrate the performance advantage of the proposed scheme

    Intelligent antenna sharing in cooperative diversity wireless networks

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2005.Includes bibliographical references (p. 143-152).Cooperative diversity has been recently proposed as a way to form virtual antenna arrays that provide dramatic gains in slow fading wireless environments. However, most of the proposed solutions require simultaneous relay transmissions at the same frequency bands, using distributed space-time coding algorithms. Careful design of distributed space-time coding for the relay channel is usually based on global knowledge of some network parameters or is usually left for future investigation, if there is more than one cooperative relay. We propose a novel scheme that eliminates the need for space-time coding and provides diversity gains on the order of the number of relays in the network. Our scheme first selects the best relay from a set of M available relays and then uses this "best" relay for cooperation between the source and the destination. Information theoretic analysis of outage probability shows that our scheme achieves the same diversity-multiplexing gain tradeoff as achieved by more complex protocols, where coordination and distributed space-time coding for M relay nodes is required. Additionally, the proposed scheme increases the outage and ergodic capacity, compared to non-cooperative communication with increasing number of participating relays, at the low SNR regime and under a total transmission power constraint.(cont.) Coordination among the participating relays is based on a novel timing protocol that exploits local measurements of the instantaneous channel conditions. The method is distributed and allows for fast selection of the best relay as compared to the channel coherence time. In addition, a methodology to evaluate relay selection performance for any kind of wireless channel statistics is provided. Other methods of network coordination, inspired by natural phenomena of decentralized time synchronization, are analyzed in theory and implemented in practice. It was possible to implement the proposed, virtual antenna formation technique in a custom network of single antenna, half-duplex radios.by Aggelos Anastasiou Bletsas.Ph.D
    • …
    corecore