63 research outputs found

    Backward errors and pseudospectra for structured nonlinear eigenvalue problems

    Get PDF
    Minimal structured perturbations are constructed such that an approximate eigenpair of a nonlinear eigenvalue problem in homogeneous form is an exact eigenpair of an appropriately perturbed nonlinear matrix function. Structured and unstructured backward errors are compared. These results extend previous results for (structured) matrix polynomials to more general functions. Structured and unstructured pseudospectra for nonlinear eigenvalue problems are also discussed

    Nonlinear eigenvalue problems with specified eigenvalues

    Get PDF
    This work considers eigenvalue problems that are nonlinear in the eigenvalue parameter. Given such a nonlinear eigenvalue problem T, we are concerned with finding the minimal backward error such that T has a set of prescribed eigenvalues with prescribed algebraic multiplicities. We consider backward errors that only allow constant perturbations, which do not depend on the eigenvalue parameter. While the usual resolvent norm addresses this question for a single eigenvalue of multiplicity one, the general setting involving several eigenvalues is ignificantly more difficult. Under mild assumptions, we derive a singular value optimization characterization for the minimal perturbation that addresses the general case

    Structured eigenvalue backward errors of matrix pencils and polynomials with Hermitian and related structures

    Get PDF
    We derive a formula for the backward error of a complex number λ when considered as an approximate eigenvalue of a Hermitian matrix pencil or polynomial with respect to Hermitian perturbations. The same are also obtained for approximate eigenvalues of matrix pencils and polynomials with related structures like skew-Hermitian, *-even, and *-odd. Numerical experiments suggest that in many cases there is a significant difference between the backward errors with respect to perturbations that preserve structure and those with respect to arbitrary perturbations

    Pseudospectra, critical points and multiple eigenvalues of matrix polynomials

    Get PDF
    AbstractWe develop a general framework for perturbation analysis of matrix polynomials. More specifically, we show that the normed linear space Lm(Cn×n) of n-by-n matrix polynomials of degree at most m provides a natural framework for perturbation analysis of matrix polynomials in Lm(Cn×n). We present a family of natural norms on the space Lm(Cn×n) and show that the norms on the spaces Cm+1 and Cn×n play a crucial role in the perturbation analysis of matrix polynomials. We define pseudospectra of matrix polynomials in the general framework of the normed space Lm(Cn×n) and show that the pseudospectra of matrix polynomials well known in the literature follow as special cases. We analyze various properties of pseudospectra in the unified framework of the normed space Lm(Cn×n). We analyze critical points of backward errors of approximate eigenvalues of matrix polynomials and show that each critical point is a multiple eigenvalue of an appropriately perturbed polynomial. We show that common boundary points of components of pseudospectra of matrix polynomials are critical points. As a consequence, we show that a solution of Wilkinson’s problem for matrix polynomials can be read off from the pseudospectra of matrix polynomials

    Structured pseudospectra for small perturbations

    Get PDF
    In this paper we study the shape and growth of structured pseudospectra for small matrix perturbations of the form AAΔ=A+BΔCA \leadsto A_\Delta=A+B\Delta C, ΔΔ\Delta \in \boldsymbol{\Delta}, Δδ\|\Delta\|\leq \delta. It is shown that the properly scaled pseudospectra components converge to nontrivial limit sets as δ\delta tends to 0. We discuss the relationship of these limit sets with μ\mu-values and structured eigenvalue condition numbers for multiple eigenvalues

    Structured eigenvalue backward errors of matrix pencils and polynomials with palindromic structures

    Get PDF
    We derive formulas for the backward error of an approximate eigenvalue of a *-palindromic matrix polynomial with respect to *-palindromic perturbations. Such formulas are also obtained for complex T-palindromic pencils and quadratic polynomials. When the T-palindromic polynomial is real, then we derive the backward error of a real number considered as an approximate eigenvalue of the matrix polynomial with respect to real T-palindromic perturbations. In all cases the corresponding minimal structure preserving perturbations are obtained as well. The results are illustrated by numerical experiments. These show that there is a significant difference between the backward errors with respect to structure preserving and arbitrary perturbations in many cases
    corecore